
SURFACE WATER AMBIENT MONITORING PROGRAM (SWAMP)

REPORT ON CARLSBAD HYDROLOGIC UNIT (HU) SAMPLING BETWEEN MARCH AND SEPTEMBER 2002

Prepared By: California Regional Water Quality Control Board, San Diego Region June 30, 2005

1. Introduction

1.1. PURPOSE OF REPORT

This report presents the results of the monitoring conducted in the Carlsbad Hydrologic Unit between March and September 2002 under the Surface Water Ambient Monitoring Program (SWAMP). The monitoring was intended to provide reliable, high quality information necessary to produce water quality assessment [305(b)] and impaired waters [303(d)] lists that are more comprehensive and more defensible than those of past years.

The primary objective for this SWAMP report is to identify specific locations of degraded water or sediments in rivers, lakes, near shore waters, enclosed bays, or estuaries using several critical threshold values of toxicity, water column or epibenthic community analysis, habitat condition, and chemical concentration.

1.2. ORGANIZATION OF REPORT

As background, this report begins by discussing the general characteristics of the Carlsbad Hydrologic Unit, identifying major water bodies and their hydrologic characteristics and beneficial uses. This background section includes brief discussions of the section 303(d) water quality impairments, land use and political boundaries, other monitoring programs that either are underway or recently have been completed and contains other noteworthy information about the watersheds in the Hydrologic Unit.

The body of the report discusses the SWAMP methodology applied during the study, and provides the monitoring results, an analysis of the data and conclusions related to the SWAMP objectives. The report then briefly correlates the SWAMP data with the data from the municipal storm water NPDES monitoring and other programs to determine if there are opportunities to maximize sampling with changes in required programs.

The report concludes by discussing suggestions for improving the SWAMP program, as well as for overall monitoring in the Carlsbad Hydrologic Unit. These suggestions include possible actions to maximize the benefit of SDRWQCB monitoring resources, the application of existing monitoring data for multiple purposes and suggestions for further monitoring in the Hydrologic Unit using future SWAMP resources.

2. BACKGROUND

2.1. DESCRIPTION OF WATERSHED¹

The Carlsbad Hydrologic Unit (CHU) is approximately 211 square miles and is formed by a group of six individual watersheds in northern San Diego County. The CHU is bordered by the San Luis Rey River Watershed to the north and by the San Dieguito River Watershed to the south. It reaches inland nearly 24 miles to just northeast of Lake Wohlford. The maximum elevation of the CHU is approximately 2,400 feet and it extends to sea level at the Pacific Ocean. The CHU is comprised of six Hydrologic Areas: Loma Alta, Buena Vista Creek, Agua Hedionda, Encinas, San Marcos Creek, and Escondido Creek.

The CHU contains four major coastal lagoons: Buena Vista, Agua Hedionda, Batiquitos, and San Elijo as shown on Figure 1. The CHU includes the entire Cities of Carlsbad, San Marcos and Encinitas and portions of the cities of Oceanside, Vista, Escondido, Solana Beach, and San Diego County unincorporated areas. The irrisdictional breakdown (by land area) for each of the six Hydrologic Areas (water shells) is indicated in Table 2-1 and shown in Figure 2.1.

Jurisdictional Breakdown (%) SOLANA BEACH SAN DIEGO CO. SAN MARCOS **ESCONDIDO SIZE** OCEANSIDE **RECEIVING ENCINITAS** CARLSBAD PECENT % WATERSHED WATERBODY (sq.mi.) Carlsbad Hydrologic Unit 100 18 32 11 8 211.5 Loma Alta (904.10) 5 97 3 9.8 Loma Alta Slough 11 19 11 45 Buena Vista Creek (904.20) Buena Vista Lagoon 22.6 26 Agua Hedionda 24 5 Agua Hedionda (904.30) 29.4 14 41 6 24 Lagoon **Encinitas** (904.40) 3 Pacific Ocean 5.4 100 San Marcos (905.50) Batisquitos Lagoon 59.7 28 29 15 5 19 33 40 11 29 55 4 Escondido Creek (904.60) San Elijo Lagoon 84.6 1

Figure 2.1

¹ The source of the material in Section 2.1 is from the report *Watershed Urban Runoff Management Program Carlsbad Hydrologic Unit* dated January 2003 and prepared by the Cities of Encinitas, Escondido, Oceanside, San Marcos, Solana Beach and Vista and the County of San Diego

Regional Location of the Carlsbad Hydrologic Unit (Source: San Diego County Project Clean Water)

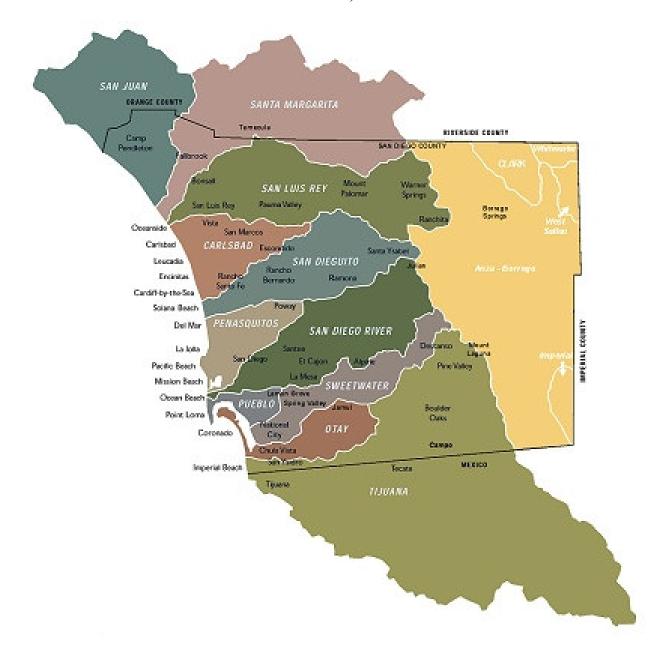
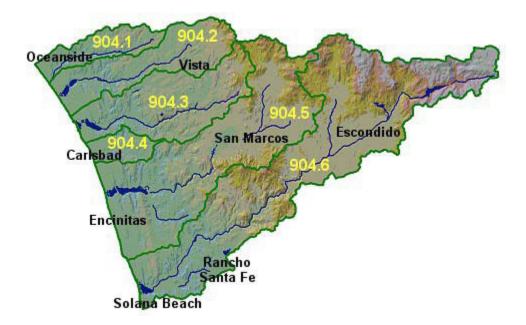



Figure 2.2 Carlsbad Hydrologic Unit (Source: Carlsbad Watershed Urban Runoff Management Program)

2.1.1. LAND USE

Land uses within the watersheds are diverse, including urban and suburban development, industrial, commercial, intense agriculture, floriculture, confined animal operations, open space, and recreational. Approximately 48% of the CHU is urbanized. The dominant land uses are residential (29%), freeways and roads (12%), agricultural (12%), commercial/industrial (6%), and vacant/ underdeveloped (32%). The population of the CHU is approximately 500,000 residents making it the third most densely populated in San Diego County behind San Dieguito and Los Penasquitos HUs. A high percentage of the underdeveloped land is private ownership and the population of the CHU is projected to increase to over 700,000 residents by 2015. The area is also responsible for the agricultural production of various agricultural crops including avocados, citrus and dairy, but horticultural production is the primary agricultural use.

2.1.2. GEOLOGIC AND GEOMORPHIC SETTING

The CHU is typical of the regional geologic and geomorphic setting of the San Diego coastal region. The drainage basins are, for the most part, relatively small features situated on low-lying coastal terraces and bounded on the east by foothill features of the coastal mountain ranges. The CHU is composed of a number of small drainage basins that are punctuated by larger drainage basins (San Luis Rey and San Dieguito) that wrap

around them and extend well inland to the mountain regions.

2.1.3. SOILS

The soils within the CHU range from excessively drained gravelly sands to well drained clays, and include areas of rough broken land, terrace escarpments, and steep gullied land. However, many of the CHU soil series have characteristics that can have a significant effect on water quality related issues. There are many properties and qualities that affect soil erodibility. Factors include slope, surface layer texture, restricted permeability, and the grade of structure in the surface layer. Since severely erodible soils comprise 90% of the CHU, caution must be used when developing land use plans and implementing grading ordinances. Probable development areas, built on highly erodible soil, pose a potential threat to the water quality and sediment management of the hydrologic unit.

Other important soil characteristics include infiltration rate (the rate at which soil absorbs precipitation), and shrink-swell factor (the mount of water a soil can hold and how quickly water can be released). Both of these characteristics affect how quickly precipitation is transformed in a surface runoff and how long subsurface flows will continue into the dry season. Soils that have a slow infiltration rate and a high shrink-swell factor are likely to generate surface runoff sooner, but also continue to discharge subsurface flows longer than a soil with a fast infiltration rate and a low shrink-swell factor.

2.1.4. VEGETATION COMMUNITIES

Historically, the CHU was comprised of narrow corridors of riparian forest, woodlands and scrub along the primary drainages, with grasslands along the valley bottoms and gently sloping hills transitioning into coastal sage and chaparral scrubs in the upland areas and groves of oak woodlands within areas of more mesic conditions. Currently, native habitats comprise approximately 39% of the CHU, with non-native constituting the remaining 61%. Native habitats primarily include upland vegetation consisting of Coastal Sage and Chaparral Scrubs, and smaller areas of Oak Woodlands, Native Grasslands, Riparian Forests/Woodlands, Riparian Scrubs, Marsh/Wetlands, and open water areas; non-native habitats include non-native grasslands and disturbed, agricultural and developed areas.

2.1.5. CLIMATE

The climate variations within the CHU are primarily the result of the degree of coastal influence and elevation. The average minimum temperatures within the CHU range from approximately 39°F to 47°F in the winter and from 51°F to 63°F during the summer months. The average maximum temperatures within the CHU range from approximately 65°F to 69°F in the winter and from 70°F to 91°F during the summer months. The annual average precipitation ranges from approximately 10 inches within the coastal areas to 17

inches within the more mountainous inland areas. Most of the precipitation falls as rain during the months from December to April. Snow is a very rare occurrence in the upper elevations of the CHU.

2.1.6. POPULATION AND SUBURBAN GROWTH

The population of the CHU, as estimated in the Carlsbad Watershed Management Plan, was nearly 500,000 in 2000. San Diego County's growth rate has been increasing dramatically over the past decades. According the San Diego Association of Governments, San Diego County's population is expected to increase by approximately one million within the next twenty years. This growth will require more than 400,000 new housing units. A significant portion of that growth will take place in northern San Diego County. An example of that growth can be seen now in the City of San Marcos, which lies within the CHU. It is currently the fastest-cowing city in the county. This trend is further reinforced based on the population trends for the seven cities within the CHU from 1980 through the year 2020.

2.1.7. DESCRIPTION OF HYDROLG GALL

The CHU is comprised of six drologic Areas or watersheds; Loma Alta Creek, Agua Hedionda Creek, Encinas Creek, San Marcos Creek, and Escondido Creek. Below is a brief description of each of these watersheds from north to south.

Loma Alta Creek

The Loma Alta Creek watershed is the northernmost watershed of the CHU. It is approximately 6,300 acres in area, comprising 5% of the CHU. The watershed extends inland about 7.3 miles and the highest elevation within the drainage area is 460 feet above mean sea level. The primary receiving waters in the watershed are Loma Alta Creek, which drains into the Loma Alta Slough and the Pacific Ocean. The watershed is located almost entirely inside the City of Oceanside with less than 5% in the City of Vista. Within the CHU, only the Encinas watersheds are smaller in area than the Loma Alta Creek watershed.

Buena Vista Creek

The Buena Vista Creek Watershed is the fourth largest system within the CHU. The watershed extends approximately 10.6 miles inland from the coast and totals approximately 14,400 acres in area, comprising 11% of the CHU. Buena Vista Creek originates on the western slopes of the San Marcos Mountains and discharges into the Pacific Ocean via Buena Vista Lagoon. The primary receiving waters in the watershed are Buena Vista Creek, the Buena Vista Lagoon, and the Pacific Ocean. The largest portion of the watershed is in the City of Vista (45%), with the remaining in Oceanside,

Carlsbad, and San Diego County.

Agua Hedionda Creek

Agua Hedionda Creekis the third largest watershed within the CHU. The watershed, dominated by Agua Hedionda Creek, extends approximately 10.6 miles inland from the coast and is about 18,800 acres in area, comprising 14% of the CHU. Agua Hedionda Creek originates on the southwestern slopes of the San Marcos Mountains in west central San Diego County and discharges into the Pacific Ocean via Agua Hedionda Lagoon. The primary water bodies in the watershed include Aqua Hedionda Creek, Buena Creek, Letterbox Canyon, Agua Hedionda Lagoon and the Pacific Ocean. Most of the watershed is in the City of Carlsbad (41%); the remainder is in Vista (24%) and San Diego County (24%) and small amounts in Oceanside and San Marcos.

Encinas Creek

The Encinas Creek watershed is 3,400 acree in size, making it the second smallest watershed within the CHU. The waters led extends inland from the coast 2.4 miles and the highest elevation within the dial acrees approximately 430 feet above mean sea level. The watershed begins as a small drainage behind an industrial area where it is immediately channelized. The Facinas Creek continues down through industrial and office parks associated with Palomar Airport until it reaches the lower valley area. It then makes its way to the Pacific Ocean after crossing Interstate 5 and Pacific Coast Highway. The Encinas watershed is entirely within the city of Carlsbad and the only significant receiving water body is the Pacific Ocean.

San Marcos Creek

The San Marcos Creek watershed is the second largest watershed within the CHU. The watershed, dominated by San Marcos Creek, extends approximately 14.1 miles inland from the coast and is about 36,000 acres in area, comprising 28% of the CHU. San Marcos Creek originates on the western slopes of the Merriam Mountains in west central San Diego County and discharges in to the Pacific Ocean via Batiquitos Lagoon. Encinitas Creek is one of the major tributaries in the watershed. It originates in the hills southwest of Questhaven Road and parallels El Camino Real before it confluence with San Marcos Creek at the southeastern corner of Batiquitos Lagoon. The highest elevation within the watershed is approximately 1,540 feet above mean sea level. Lake San Marcos is the largest impoundment within the watershed. There are also a number of small farm ponds on various tributaries in the lower basin. The major receiving water-bodies within the watershed are San Marcos Creek, Encinitas Creek, Batiquitos Lagoon, and the Pacific Ocean. The Cottonwood Creek sub-basin is also located in this watershed which drains a portion of Encinitas directly into the Pacific Ocean. The San Marcos Creek watershed is primarily located in San Marcos, Carlsbad, Encinitas, and the County of San Diego, with a small portion in Escondido.

Escondido Creek

The Escondido Creek watershed is the largest and most complex system within the CHU. The watershed extends approximately 24.6 miles inland from the coast and totals 54,100 acres in the area, comprising 40% of the CHU. Escondido Creek watershed originates in Bear Valley in north central San Diego County and discharges into the Pacific Ocean via San Elijo Lagoon. Elevations within the watershed range from sea level to 2,420 feet on the ridges above Bear Valley. There are three main reservoirs within the watershed: Lake Wohlford, Dixon Lake and San Dieguito Reservoir. Another major impoundment, Olivenhain Reservoir is currently under construction. Most of the watershed is in unincorporated areas of the County (55%). The remaining is in the cities of Escondido and Encinitas, with a small portion in San Marcos and Solana Beach. The primary receiving waters are Escondido Creek, Lake Wohlford, Lake Dixon, Reidy Canyon, San Elijo Lagoon, and the Pacific Ocean.

2.2. BENEFICIAL USES OF SURFACE WATERS

As presented in Table 2-2, the Water Quality Control Plan for the San Diego Region(9) (Basin Plan) lists the beneficial uses for designated surface waters in the Carlsbad HU. These beneficial uses form the cornerstone for the State's water quality protection programs.

2.3. SECTION 303(D) IMPAIRED WATER BODIES

Section 303(d) of the federal Clean Water Act (CWA, 33 USC 1250, et seq., at 1313(d)), requires States to identify waters that do not meet water quality standards after applying certain required technology-based effluent limits ("impaired" water bodies). States are required to compile this information in a list and submit the list to USEPA for review and approval. This list is known as the Section 303(d) list of impaired waters. Impaired water bodies within the Carlsbad HU, as identified through the Clean Water Act Section 303(d) process, are provided in Table 2-3.

Table 2-2 Beneficial Uses of Surface Waters in Carlsbad HU

Surface Waters ^{1, 2}	Hydrologic Unit Basin	M U N	A G R	I N D	P R O	G W R	F R S	P O W	R E C	R E C	C O M	B I O	E S T	W A R	C O L	W I L	R A R	M A R	A Q U	M I G	S P W	S H E
	Number				C		Н		1	2	M	L		M	D	D	Е		A	R	N	L
Carlsbad HU Coastal Waters																						
Loma Alta Creek	4.10	+							0	•				•		•						
Loma Alta Slough	4.10								•	•				•		•	•	•				
Buena Vista Lagoon	4.21								•	•		•	0	•		•	•	•				
Buena Vista Creek	4.22	+	٠	1					•	•				•		•						
Buena Vista Creek	4.21	+		•					•	•				•		•	•					
Agua Hedionda Lagoon	401	Λ		4					•	•	•		•			•	•	•	•	•		•
Agua Hedionda Creek	422	7	•	•					•	•				•		•						
Buena Creek	4 32	•	•	•					•	•				•		•						
Agua Hedionda Creek	4.30	•	•	•					•	•				•		•						
Letterbox canyon	4.31	•	•	•					•	•				•		•						
Canyon de las Encinas	4.40	+							0	•				•		•						
San Marcos Creek Watershed																						
Batiquitos Lagoon	4.51								•	•		•	•			•	•	•		•		
San Marcos Creek	4.52	+	•						•	•				•		•						
unnamed intermittent streams	4.53	+	•						•	•				•		•						
San Marcos Creek	4.51	+	•						•	•				•		•						
Encinitas Creek	4.51	+	•						•	•				•		•						
Escondido Creek Watershed																						
San Elijo Lagoon	4.61								•	•		•	•			•	•	•		•		
Escondido Creek	4.63	•	•	0				•	•	•				•	•	•						
Lake Wohlford	4.63	•	•	0				•	•3	•				•	•	•						
Lake Dixon	4.62	•	•	0					•3	•				•	•	•						
Escondido Creek	4.62	•	•	0					•	•				•	•	•						
Reidy Canyon	4.62	•	•	0					•	•				•	•	•						
Escondido Creek	4.61	•	•	0					•	•				•	•	•						

[•] Existing Beneficial Use

o Potential Beneficial Use

⁺ Excepted from MUN (See Text)

Waterbodies are listed multiple times if they cross hydrologic area or sub area boundaries.
 Beneficial use designations apply to all tributaries to the indicated waterbody, if not listed separately.
 Fishing from shore or oat permitted, but other water contact recreation (REC-1) uses are prohibite

Table 2-3 2002 List of Section 303(d) Impaired Waterbodies

Hydrologic Descriptor	Waterbody	Segment / Area	Pollutant / Stressor	Extent of Impairment
Loma Alta HA (904.10)	Pacific Ocean Shoreline	at Loma Alta Creek Mouth	Bacterial Indicators	1.1 miles
Loma Alta HA (904.10)	Loma Alta Slough		Bacterial Indicators Eutrophic	8.2 acres
Buena Vista Creek HA (904.20)	Pacific Ocean Shoreline	at Buena Vista Creek, Carlsbad City Beach at Carlsbad Village Drive, Carlsbad State Beach at Pine Avenue	Bacterial Indicators	1.2 miles
El Salto HSA (904.21)	Buena Vista Lagoon		Bacterial dicators Sediment tion / Siltation	202 acres
Los Monos HSA (904.31)	Agua Hedionda Lagoon	n R	Barterial Indicators e imentation / Siltation	6.8 acres
Los Monos HSA (904.31)	Agua Hedionda Creek	lower po tio	Total Dissolved Solids	7 miles
San Marcos HA (904.50)	Pacific Ocean Shoreline	at Moonlight State Beach	Bacterial Indicators	0.5 miles
Escondido Creek HA (904.60)	Pacific Ocean Shoreline	at San Elijo Lagoon	Bacterial Indicators	0.44 miles
San Elijo HSA (904.61)	San Elijo Lagoon		Bacterial Indicators Eutrophic Sedimentation / Siltation	566 acres

2.4. MONITORING WITHIN THE CARLSBAD HU

The Municipal Storm Water permit for the County of San Diego (County), incorporated cities within the County, San Diego Unified Port District, and San Diego Airport Authority requires the copermittees to conduct receiving water monitoring. Various versions of the monitoring program have been in effect since 1993. The program has evolved through time to include more sample sites and programs. Monitoring requirements include chemical and toxicity testing of runoff from long-term mass loading stations, rapid stream bioassessments, ambient bay and lagoon monitoring, and dry weather and coastal outfall sampling. A chronology of the evolution of the monitoring program, as well as specific methodologies and results for the Carlsbad HU, can be found in the San Diego County Municipal Copermittees 2003-2004 Urban Runoff Monitoring Final Report (MEC; January 2005).

A summary of the 2003-2004 monitoring results is provided in Section 4.0. Where appropriate, and when additional SWAMP resources are available, quantitative water quality data from copermittee monitoring will be integrated with the SWAMP data to allow for a more comprehensive assessment of water quality within the Carlsbad HU.

3. SURFACE WATER AMBIENT WATER MONITORING PROGRAM

At the time samples were collected in the Carlsbad HU, SWAMP monitoring in the San Diego region was intended to provide reliable, high quality information necessary to produce water quality assessment [305(b)] and impaired waters [303(d)] lists that are more comprehensive and more defensible than those of past years. The primary objectives for SWAMP monitoring in the San Diego region were those identified as numbers 9, 10, and 11 in the "Site Specific Monitoring" section of the SWRCB Report to the Legislature (See Table 3-1).

Table 3-1 Primary Objective for SWAMP Monitoring

Number	Primary Objectives for SWAMP Monitoring
9	At sites influenced by poir a purce, e.g., storm drains, publicly owned
	treatment works, etc.) or ronpoint sources of pollutants, identify specific
	locations of degrade water or sediments in rivers, lakes, nearshore waters,
	enclosed bays, or estuaries using several critical threshold values of toxicity,
	water column or epibenthic community analysis, habitat condition, and
	chemical concentration.
10	At sites influenced by point sources (e.g., storm drains, publicly owned treatment works, etc.) or nonpoint sources of pollutants, identify specific
	locations of degraded sediment in rivers, lakes, nearshore waters, enclosed
	bays, or estuaries using several critical threshold values of toxicity, water
	column or epibenthic community analysis, habitat condition, and chemical
	concentration.
11	Identify the areal extent of degraded sediment locations in rivers, lakes,
	nearshore waters, enclosed bays, and estuaries using several critical threshold
	values of toxicity, benthic community analysis, habitat condition, and chemical
	concentration.

These objectives are related to the question of whether aquatic populations, communities, and habitats are protected.

Over time, the goals and objectives of the SWAMP program within the San Diego region have evolved. Originally and primarily, the San Diego region intended to use SWAMP data in of support of Clean Water Act sections 303(d) and 305(b) assessments. While available resources and the still incomplete Listing Policy preclude SWAMP data alone being sufficient for these purposes, some knowledge of ambient conditions is still obtained. SWAMP data should be used to initiate or support site-specific actions. These include traditional enforcement and the issuance of requests for more information under the authority of Porter Cologne.

Secondarily, SWAMP should serve as the framework to establish comprehensive regional ambient monitoring. Through the increased internal organization and the development of partnerships with stakeholders, SWAMP can coordinate available regional resources to truly characterize ambient conditions throughout the region. The data will then allow the identification of trends in water quality and beneficial uses, support development of regional nutrient criteria and further support the refinement of the Index of Biotic Integrity (IBI). Public and stakeholder education and fostering increased stewardship of our waters are additional goals and objectives.

3.1. SAMPLE COLLECTION METHODOLOGY

Samples were collected and analyzed in accordance with the Fiscal Year 2000-2001 Work Plan. Sample locations are shown on Figure 3-1. Cruise reports that describe sampling activities are provided in Appendix A; sampling stations and dates are listed in Table 3-2 and monitoring analysis in Table 3-3

Table 3-2 SWAMP Carl bac HD Sampling Locations and Dates

Station No.	Location	Hydo. Area	Latitude	Longitude		Sample	Dates	
904CBAQH6	Agua Hedionda Creek	904.31	33.14887	-117.29758	3/12/2002	4/23/2002	6/4/2002	9/18/2002
904CBBUR1	Buena Creek	904.32	33.17225	-117.20887	3/12/2002	4/23/2002	6/3/2002	9/17/2002
904CBBVR4	Buena Vista Creek	904.21	33.18147	-117.32893	3/12/2002	4/22/2002	6/3/2002	9/16/2002
904CBCWC2	Cottonwood Creek	904.51	33.04852	-117.29513	3/13/2002	4/23/2002	6/4/2002	9/17/2002
904CBENC2	Encinitas Creek	904.51	33.06828	-117.26261	3/13/2002	4/23/2002	6/4/2002	9/17/2002
904CBESC5	Escondido Creek	904.62	33.08559	-117.15037	3/13/2002	4/24/2002	6/4/2002	9/18/2002
904CBESC8	Escondido Creek	904.61	33.03393	-117.23565	3/13/2002	4/24/2002	6/4/2002	9/17/2002
904CBLAC3	Loma Alta Creek	904.10	33.19993	-117.33008	3/12/2002	4/22/2002	6/3/2002	9/16/2002
904CBSAM3	San Marcos Creek	904.52	33.13027	-117.19200	3/12/2002	4/23/2002	6/4/2002	9/17/2002
904CBSAM6	San Marcos Creek	904.51	33.08791	-117.26852	3/13/2002	4/23/2002	6/4/2002	9/17/2002

Table 3-3 SWAMP Carlsbad HU Sampling Analytes

Field	Inorganics	Metals	OP Pesticides	OC Pesticides	PCBs
Measurements	(water samples)	dissolved	(water sample)	(water sample)	(water
TVICUSUI CITICITES	(water samples)	(water sample)	(water sample)	(water sample)	sample)
stream velocity	Alkalinity as CaCO ₃	Aluminum	Aspon	Aldrin	PCB 005
dissolved	Ammonia as N	Arsenic	Azinphos ethyl	Chlordane, cis	PCB 008
oxygen	Nitrate & Nitrite as N	Cadmium	Azinphos methyl	Chlordane,	PCB 015
pH	Nitrogen as Total Kjeldahl	Chromium	Bolstar	trans	PCB 018
temperature	OrthoPhosphate as P	Copper	Carbophenothion	Chlordene,	PCB 027
conductivity	Total Phosphorus as P	Lead	Chlorfenvinphos	alpha	PCB 028
turbidity	Sulfate	Manganese	Chlorpyrifos	Chlordene,	PCB 029
•		Nickel	Chlorpyrifos methyl	gamma	PCB 031
	PAHs	Selenium	Ciodrin(Crotoxyphos)	Dacthal	PCB 033
	(water sample)	Silver	Coumaphos	DDD(o,p')	PCB 044
Trianzine		Zinc	Demeton-s	DDD(p,p')	PCB 049
Herbicides	Acenaphthene		Diazinon	DDE(o,p')	PCB 052
(water sample)	Acenaphthylene		Dichlof mion	DDE(p,p')	PCB 056
	Anthracene		D'anlorves	DDMU(p,p')	PCB 060
Ametryn	Benz(a)anthracene		D topl os	DDT(o,p')	PCB 066
Atraton	Benzo(a)pyrene		Demethoate	DDT(p,p')	PCB 070
Atrazine	Benzo(b)fluoranthene	NKI	Doxathion	Dieldrin	PCB 074
Prometon	Benzo(e)pyrene		Disulfoton	Endosulfan I	PCB 087
Prometryn	Benzo(g,h,i)perylene	Fish Tissue	Ethion	Endosulfan II	PCB 095
Propazine	Benzo(k)fluoranthene	at station	Ethoprop	Endosulfan	PCB 097
Secbumeton	Biphenyl	<u>904CBSAM5</u>	Famphur	sulfate	PCB 099
Simazine	Chrysene	5 red ear sunfish	Fenchlorphos	Endrin	PCB 101
Simetryn	Dibenz(a,h)anthracene	15 crayfish	Fenitrothion	Endrin	PCB 105
Terbuthylazine	Dimethylnaphthalene, 2,6-		Fensulfothion	Aldehyde	PCB 110
Terbutryn	Fluoranthene	at station	Fenthion	Endrin Ketone	PCB 114
	Fluorene	<u>904CBAQH6</u>	Fonofos (Dyfonate)	HCH, alpha	PCB 118
	Indeno(1,2,3-c,d)pyrene	5 black bullhead	Leptophos	HCH, beta	PCB 128
	Methylnaphthalene, 1-		Malathion	HCH, delta	PCB 137
	Methylnaphthalene, 2-		Merphos	HCH, gamma	PCB 138
	Naphthalene		Methidathion	Heptachlor	PCB 141
	Perylene		Mevinphos	Heptachlor	PCB 149
	Phenanthrene		Molinate	epoxide	PCB 151
	Phenanthrene/Anthracene,		Naled(Dibrom)	Methoxychlor	PCB 153
	C1 -		Parathion, Ethyl	Mirex	PCB 156
	Pyrene Trimathylpaphthalana		Parathion, Methyl	Nonachlor, cis	PCB 157
	Trimethylnaphthalene,		Phorate Phosmet	Nonachlor,	PCB 158 PCB 170
	2,3,5-		Phosphamidon	trans Oxadiazon	PCB 170 PCB 174
	Toxicity		Sulfotep	Oxychlordane	PCB 174 PCB 177
	(water sample)		Terbufos	Tedion	PCB 177 PCB 180
	Ceriodaphnia dubia		Tetrachlorvinphos	1 Culon	PCB 180 PCB 183
	Selenastrum capricornutum		Thiobencarb		PCB 183
	Selenastram capiteomatum		Thionazin		PCB 189
			Tokuthion		PCB 194
	Toxicity		Trichlorfon		PCB 195
	(sediment sample)		Trichloronate		PCB 200
	Hyalella azteca		Triphenyl phosphate		PCB 201
	Try atoma aziooa		(Surrogate)		PCB 203
			(Suit Suite)		PCB 206
					PCB 206

3.2. THRESHOLD VALUES

Threshold values are used to determine constituent concentrations or toxicity values which are elevated or biologic assessment data or fish tissue data, which indicate an impairment. Exceedance of a threshold value does not necessarily equate to exceedance of a regulatory value; rather the values are used for comparison purposes. Threshold values have been determined from a variety of sources including:

- Water Quality Control Plan for the San Diego Basin (9) (Basin Plan);
- Code of Federal Regulations Title 40 part 131 Water Quality Standards; Establishment of Numeric Criteria for Priority Toxic Pollutants for the State of California (CTR);
- Maximum Contaminant Levels (MCL) established in the California Code of Regulations
- Total Maximum Daily Load (TMDL;)
- US Environmental Protection Agency (USEPA) Maional aquatic life criteria;
- Method Detection Limit (MDL) or Reportin Limit (RL); and Statistical Methodologies.

3.2.1. CHEMICAL DATA

The Threshold Value for OP Pedicides, OC Pesticides, Trianzine Herbicides, PAHs, and PCBs is the method detection limit (MDL) or in cases where the result was below the MDL, the reporting limit if proper quality assurance/ quality control procedures was documented by the laboratory. Otherwise, the Threshold Values listed were based upon the Water Quality Control Plan for the San Diego Basin (9) (Basin Plan), which contains numerical and narrative water quality objects for all inland surface waters and coastal lagoons within the Carlsbad HU. The Basin Plan incorporates by reference the maximum contaminant levels specified in California Code of Regulations, Title 22, Table 64444-A of section 6444 (Organic Chemicals { XE "Water quality objective:Organic chemicals – primary standards" }), Table 64431-A of section 64431 (Inorganic Chemicals), Table 64449-A (Secondary Maximum Contaminant Levels, Consumer Acceptance Limits) for all surface water in the watershed that are designated for use as domestic or municipal supply (MUN). The Basin Plan also incorporates by reference for all inland surface waters and coastal estuaries, the numerical objectives for toxic pollutants applicable to California as specified in 40 CFR 131.36 (§131.36 revised at 57 FR 60848, December 22, 1992). Criteria from USEPA's National Recommended Water Quality Criteria to protect Freshwater Aquatic Life were used as threshold values for alkalinity, ammonia, and selenium in the absence of other applicable criteria. The CTR contains criteria for selenium, but it is not applicable in San Diego region. The chronic CTR selenium limit is the same as the chronic USEPA criteria.

Numerical water quality objectives are presented in the Basin Plan for some constituents by hydrologic area and subarea in Table 3-2. In addition, the Basin Plan specifies the following:

- The discharge of wastes shall not cause concentrations of un-ionized ammonia (NH3) to exceed 0.025 mg/l (as N) in inland surface waters, enclosed bays and estuaries and coastal lagoons.
- Inland surface waters, bays and estuaries and coastal lagoon waters shall not contain biostimulatory substances{ XE "Water quality objective: Biostimulatory substances" } in concentrations that promote aquatic growth to the extent that such growths cause nuisance or adversely affect beneficial uses.

Concentrations of nitrogen and phosphorus, by themselves or in combination with other nutrients, shall be maintained at levels below those which stimulate algae and emergent plant growth. Threshold total phosphorus (P) concentrations shall not exceed 0.05 mg/l in any stream at the point where it enters any standing body of water, nor 0.025 mg/l in any standing body of water. A desired goal in order to prevent plant nuisance in streams and other flowing waters appears to be 0.1 mg/l total P. These values are not to be exceeded from than 10% of the time unless studies of the specific water body in question thatly show that water quality objective changes are permissible and on message approved by the Regional Board. Analogous threshold values have not been set for nitrogen compounds; however, natural ratios of nitrogen—phosphorus are to be determined by surveillance and monitoring and upheld. If data are lacking, a ratio of N:P = 10:1, on a weight to weight basis shall be used.

- Dissolved oxygen levels shall not be less than 5.0 mg/l in inland surface waters with designated MAR or WARM beneficial uses or less than 6.0 mg/l in waters with designated COLD beneficial uses. The annual mean dissolved oxygen concentration shall not be less than 7 mg/l more than 10% of the time.
- In inland surface waters the pH shall not be depressed below 6.5 nor raised above 8.5.
- All waters shall be maintained free of toxic substances in concentrations that are toxic to, or that produce detrimental physiological responses in human, plant, animal, or aquatic life. Compliance with this objective will be determined by use of indicator organisms, analyses of species diversity, population density, growth anomalies, bioassays of appropriate duration, or other appropriate methods as specified by the Regional Board.

3.2.2. TOXICITY DATA

The evaluation threshold used to determine whether the associated level for identifying if an environmental sample is significantly different from its associated control sample, was 80 percent. The statistical test method was the paired T-test. The Toxicity Significant Effect Code indicates whether the sample result is significantly different from the control. The results are reported in a significant effects code. The code is in two parts. The first

part of the code refers to the probability value, calculated using the statistical method, which is significant if below .05. The second part of the code refers to the percentage difference between the sample mean and the 80% evaluation threshold. Table 3-4 lists the Toxic Significant Effect Codes.

Table 3-4 Toxic Significant Effect

Code	Description
F_LC50	Fails LC50 (50% mortality), draft
S	Statistically significant, see comments.
X	None - Sample is control or reference and statistical significance is not applicable.
NSR	Not significant when compared to reference, sample not compared to negative control.
NSL	Not significant compared to negative control based on statistical test, alpha less than 5%, but was less than the evaluation threshold (Second criteria met)
SG	Significant compared to negative on the based or statistical test, alpha less than 5%, BUT is greater than the evaluation threshold. Only the first criteria met)
NSG	Not significant compared to negative control based on statistical test, alpha of 5%, and is above the evaluation the shole (No criteria met)
SR	Significant when compared to reference, sample not compared to negative control.
NR	Not reported.
NS	Not significant, see comments for any available explanation.
SL	Significant compared to negative control based on statistical test, alpha of less than 5%, AND less than the evaluation threshold (Both criteria met)
NA	Significance not applicable to sample.

3.2.3. Fish Tissue (To be developed)

3.3 DATA ANALYSIS METHODOLOGY

Results from the three types of monitoring were assessed to evaluate the extent and causes of pollution in receiving waters and to prioritize management actions to eliminate or reduce the sources. The framework provided in Table 3-5 below was used to determine conclusions from the data and appropriate follow-up actions. The framework in Table 3-5 was derived from the *Model Monitoring Program for Municipal Separate Storm Sewer Systems in Southern California* (SMC, 2004).

When, based on the framework in Table 3-5, data indicates the presence of toxic pollutants, conducting a Toxicity Identification Evaluation (TIE) is recommended. A TIE is a set of procedures used to identify the specific chemical(s) responsible for toxicity to aquatic organisms. When discharges are toxic to a test organism, a TIE must be conducted to confirm potential

constituents of concern and rule out others, therefore allowing the prioritization of appropriate management actions. If a sample is toxic to more than one species, it is necessary to determine the toxicant(s) affecting each species. If the type and source of pollutants can be identified based on the data alone and an analysis of potential sources in the drainage area, a TIE is not necessary.

When a TIE identifies a pollutant as a cause of toxicity, it will then necessary to conduct a toxicity reduction evaluation (TRE). A TRE is a study conducted in a step-wise process to identify the causative agents of toxicity, isolate the sources of toxicity, evaluate the effectiveness of toxicity control options, and then confirm the reduction in toxicity. A TRE should include an analysis and discussion of all potential source(s) causing toxicity, proposed BMPs to eliminate or reduce the pollutants causing toxicity, and suggested follow-up monitoring to demonstrate that toxicity has been removed.

Table 3-5 Triad Approach to Determining Follow-Up Actions

		10 0 0 11100 115	proden to Betermin			
	Chemistry	Toxicity	Bioassessment	Possible Conclusion Determining Action	Action	
1.	Persistent ² exceedance of water quality objectives	Evidence of toxicity ³	Indications of beathlic alteration ⁴	Strong evidence of pollution- induced degradation	Conduct TIE to identify contaminants of concern, based on TIE metric, initiate TRE	
2.	No persistent exceedances of water quality objectives	No evidence of toxicity	No indications of benthic alteration	No evidence of pollutant-induced degradation	No action necessary	
3.	Persistent exceedance of water quality objectives	No evidence of toxicity	No indications of benthic alteration	Contaminants are present but not bioavailable	Assess possible upstream sources of pollutants causing exceedances	
4.	No persistent exceedances of water quality objectives	Evidence of toxicity	No indications of benthic alteration	Unmeasured contaminants exist with the potential to cause degradation to aquatic life	Conduct TIE to identify contaminants of concern, based on TIE metric, initiate TRE	
5.	No persistent exceedances of	No evidence of toxicity	Indications of benthic alteration	Alteration probably not due	No action necessary due to toxic	

² Persistent exceedance shall mean the exceedance of relevant Basin Plan or CTR objectives by 20% for three sampling events.

³ Evidence of toxicity shall mean a Toxic Significant Effect determination of SL (significant compared to negative control based on statistical test, alpha of less than 5%, and less than the evaluation threshold (Both criteria met)) on two or more dates.

⁴ Indications of benthic alteration shall mean an IBI score of Fair, Poor, or Very Poor.

	Chemistry	Toxicity	Bioassessment	Possible Conclusion Determining Action	Action
	water quality objectives			to toxic pollutants	chemicals Initiate TRE for physical sources of benthic alteration
6.	Persistent exceedance of water quality objective	Evidence of toxicity	No indications of benthic alteration	Toxic contaminants are bioavailable, but in situ effects are not demonstrable	If chemical and toxicity tests indicate persistent degradation, conduct TIE to identify contaminants of concern, based on TIE metric, initiate TRE

3.4 SWAMP RESULTS AND DATA

3.4.1 General Findings

- a. PCBs were not detected in any of the samples collected.
- b. PAHs were very rarely detected in the samples. Naphthalene was found in five of the forty samples and phenanthrene in three samples.
- c. The most frequent OP pesticides detected were diazinon (87.5% of the samples) and disulfoton (65%). The next frequent OP pesticide was dimethoate, which was detected in 15% of the samples.
- d. Oxadiazon was the most frequently detected OC pesticide (70% of the samples). DDE (p,p') was the second most frequently OC pesticide at 35%. Dacthal and HCH, alpha were detected in 17.5% of the samples.
- e. Atrazine (20% of the samples), prometon (15%), propazine (20%), secbumeton (47.5%) and terbuthylazine (50%) were the triazine herbicides detected in the samples.
- f. Except for selenium, concentrations of dissolved metals in all the samples were well below threshold values. As noted in Section 3.2.1 above, the threshold value for selenium was based upon the criteria from USEPA's National Recommended Water Quality Criteria to protect Freshwater Aquatic Life. Approximately 70% of the samples exceeded this threshold of 5 ug/L.

g. Total nitrogen and total phosphorus exceeded the Basin Plan objective in approximately 65% of the samples and the objective for sulfate in 80% of the samples.

3.4.2 Agua Hedionda Creek

Station No. 904CBAQH6 is located in HA 904.31, south of Cannon Rd, west of El Camino Real intersection in the City of Carlsbad. Samples were collected on the upstream side of the bridge in the main stem of stream. (GPS 33.14887N 117.29758W). The average turbidity measured at this station was the lowest of all stations in the Carlsbad HU.

Water Chemistry (Table 3-6.1)

Threshold values for total nitrogen, and sulfate were persistently exceeded. Total nitrogen (total kjeldahl nitrogen + nitrate + nitrite as N) exceeded the Basin Plan objective of 1.0 mg/L in 3 of 4 samples. Sulfate exceeded the Basin Plan objective of all four occasions.

The test results show that this location 1 ad h/1 west detections (19) of pesticides/ herbicides of all the sampling stations in the Cars at HO. Diazinon exceeded the MDL in one sample and was detected but not quantifiable reansther. The sample that exceeded the MDL was below the Regional Board numericategets in the Chollas Creek TMDL (Loading Capacity) that were set equal to the California Department of Fish and Game's water quality criteria for the protection of freshwater aquatic organisms from diazinon. The acute water quality criterion of 0.08 ug/L protects aquatic life from short-term exposure to diazinon, while the chronic criterion of 0.05 ug/L protects aquatic life from long-term diazinon exposure. Other OP Pesticides detected were demeton-s, dimethoate, mevinphos, and naled(dibrom) in single samples. Disulfoton was detected twice at levels below the RL.

OC Pesticides detected in single samples were chlordane (gamma), DDE (p,p'), HCH (alpha), and HCH (delta) Oxadiazon was detected in three samples, twice above the RL and once below.

Terbuthylazine exceeded the MDL in two of the four samples. Other Trianzine Herbicides detected, but in only one sample below the RL, were atrazine and secbumeton.

Toxicity: (Table 3-6.2)

Water samples showed persistence of toxicity to ceriodaphnia and selanastrum. The results for 4 of the 4 water samples were significant compared to negative control based on statistical test, alpha of less than 5%, and less than the evaluation threshold (Code SL) in testing on ceriodaphnia (young/female) and selenastrum. Sediment was SL for Hyalella in one of the 4 samples.

Table 3-6.1 Monitoring Results: Station CBAHC6 - Agua Hedionda Creek

CTATION COACDAOU		Threehold					Samp	leDate			
STATION 904CBAQH	•	Threshold Value	Source	03/12/	02	4/23/		6/4/	02	9/17/0)2
Analyte	Units	value		Value I	Notes	Value	Notes	Value	Notes	Value I	Notes
General/Physical											
pH	units	6.5 - 8.5	BP	7.82		8.15		7.76		7.52	
Specif. Conduct.	mS/cm			2.707		2.828		2.748		3.008	
Temp.	°C			14.44		20.65		15.48		18.78	
Turbidity	ntu	20	BP	0.57		0.95		0.24		1.4	
Velocity	fps			0.917		1.66		ND		1.34	
Sat.Oxygen	%			95.8		113.6		94.9		98.9	
Inorganics											
Alkalinity as CaCO3	mg/L	20000	EPA	234		237		229		229	
Ammonia as N	mg/L	7.97	EPA	0.07	а	0.13		0.07	а	0.071	
Nitrate + Nitrite as N	mg/L	1	BP	1.35		1.36		1.18		0.481	
Nitrogen, Total Kjeldar	mg/L	 1	BP	0.37	а	2.52		0.37	а	0.34	
OrthoPhosphate as P	mg/L	<u> </u>		0.047		.052		0.024		0.026	
Phosphorus, Total as I	mg/L	0.1	BP	0.05		0.05		0.04		0.036	
Sulfate	mg/L	250	BP	32 /		432		449		522	
Dissolved Metals	g/ =			7		1102					
Aluminum	μg/L	1000/200	//CI	121		0.998		3.65		-0.10	b
Arsenic	μg/L	50	NCL	4.17	•	4.61		1.88		3.89	
Cadmium	μg/L	4.1/11	TI	0.0548		0.0447		0.0305		0.0776	
Chromium	μg/L	50	, CL	1.4		0.335		0.145		0.3	
Copper	μg/L	18/29	CTR	2.48		2.89		2.21		2.44	
Lead	μg/L	6.2/160	CTR	-0.01	b	-0.01	b	-0.002	b	0.0039	
Manganese	μg/L	50	MCL	76.8		38.1		126	~	51	
Nickel	μg/L	110/950	CTR	0.561		1.53		0.664		2.75	
Selenium	μg/L	20	CTR	5.82		6.52		2.14		7.74	
Silver	μg/L	14	CTR	-0.01	b	-0.01	b	0.0209		-0.01	b
Zinc	μg/L	240/240	CTR	2.04		0.496		1.73		2.7	
OP Pesticides	µg/ L	210/210	• • • • • • • • • • • • • • • • • • • •	2.01		0.100		11.70			
Demeton-s	μg/L	0.04/0.1	MDL/RL	0.04	а	-0.04	b	-0.04	b	-0.04	b
Diazinon	μg/L	0.01/0.02	MDL/RL	0.032	-	0.013	a	-0.005	b	-0.005	b
Dimethoate	μg/L	0.03/0.05	MDL/RL	-0.03	b	0.04	a	-0.03	b	-0.03	 b
Disulfoton	μg/L	0.01/0.05	MDL/RL	0.03	а	0.03	a	-0.01	b	-0.01	b
Mevinphos	μg/L	0.03/0.05	MDL/RL	0.04	а	-0.03	b	-0.03	b	-0.03	b
Naled(Dibrom)	μg/L	0.03/0.05	MDL/RL	0.04	a	-0.03	b	-0.03	b	-0.03	b
OC Pesticides	F-9/ =	0100,0100									
DDE(p,p')	μg/L	0.001/0.002	MDL/RL	-0.001	b	0.003		-0.001	b	-0.001	b
HCH, alpha	μg/L	0.001/0.002	MDL/RL	-0.001	b	-0.001	b	-0.001	b	0.0015	
HCH, delta	μg/L	0.001/0.002	MDL/RL	-0.001	b	0.001	a	-0.001	b	-0.001	b
Oxadiazon	μg/L	0.001/0.002		0.001	a	0.006		0.005		-0.001	b
Trianzine Herbicides	₩9 [,] =	0.00 ., 0.002		0.00.				0.000			
Atrazine	μg/L	0.02/0.05	MDL/RL	0.035	а	-0.02	b	-0.02	b	-0.02	b
Secbumeton	μg/L	0.02/0.05	MDL/RL	0.035	a	-0.02	b	-0.02	b	-0.02	b
Terbuthylazine	μg/L	0.02/0.05	MDL/RL	0.13		0.175		-0.02	b	-0.02	b
PCBs	ry'-	0.02, 0.00	/	3.13		5.170		0.02	~	3.02	~
none exceeding MDL o	r RI										
PAHs											
Anthracene	μg/L	0.02	RL	-0.02		0.035		-0.02		-0.0125	
Naphthalene	μg/L μg/L	0.02	RL	-0.02		0.035		-0.02		-0.0125	
Phenanthrene	μg/L	0.02	RL	-0.02		0.035		-0.02		-0.0125	

Abbreviations: MDL - method detection level RL - reporting level μg/L - micrograms per liter

Notes: a. Calculated value 1/2 distance between MDL and RL b. Less than MDL

Table 3-6.2 Toxicity Results Station CBAQH6 - Agua Hedionda Creek

		•	Toxicity Speci	ies				
Station	Cariada	mbuis dubis	Selenastrum	Huala	II			
CBAQH6	Cerioda	phnia dubia	capricornutum	нуаве	lla azteca			
Sample Type:		grab	grab	integrated				
Matrix:		water	water	sec	liment			
Method	EPA 1994 (I	EPA 600/4-91/002)	EPA 1994 (EPA 600/4-91/002)	EPA 2000 (E	PA 600R-99/064)			
Eval Threshold		80%	80%		80%			
Stat Method		red T-test	Paired T-test		ed T-test			
Toxic Test Dur	7 days	7 days	4 days	10 days	10 days			
Toxic End Point	Survival (%)	Young/ female (#)	Total Cell Count	Growth (weight)	Survival (%)			
Unit	%	Num/Rep	cells/ml	mg/ind	%			
Rep Count	10	10	4	8	8			
3/12/2002								
Mean	100	17	273 000	0.13	80			
Std Dev	0	4	59	0.039	16.9			
Probability	0.172	0.012	0. 01	0.032	0.153			
Pct Control	111.1	72 3	51.7	142	91.4			
Tox Sig Effect Code	NSG	s.	SL	SG	NSG			
4/23/2002								
Mean	100	16	2648000	0.209	23			
Std Dev	0	6	358143	0.167	13.9			
Probability	0.5	0.032	0.001	0.355	0			
Pct Control	100	69.5	51.7	89.9	24			
Tox Sig Effect Code	NSG	SL	SL	NSG	SL			
6/4/2002								
Mean	100	11	2113000	0.207	99			
Std Dev	0	4	132035	0.031	3.54			
Probability	0.084	0.004	0	0	0.092			
Pct Control	125	53.3	43.2	143	105			
Tox Sig Effect Code	NSG	SL	SL	SG	NSG			
9/17/2002								
Mean	100	10	2793000	0.22 0.249	73 84			
Std Dev	0	3	608687	0.048 0.038	16.7 9.16			
Probability	0.5	0.012	0	0.015 0.01	0.241 0.148			
Pct Control	100	64.6	42.7	79 120	92.2 108			
Tox Sig Effect Code	NSG	SL	SL	SL SG	NSG NSG			

TOXIC SIG EFFECT CODES

SL - Significant compared to negative control based on statistical test, alpha of less than 5%, AND less than the evaluation threshold (Both criteria met)

NG - Significant compared to negative control based on statistical test, alpha less than 5%, BUT is greater than the evaluation threshold (Only the first criteria met)

NSL - Not significant compared to negative control based on statistical test, alpha less than 5%, but was less than the evaluation threshold (Second criteria met)

NSG - Not significant compared to negative control based on statistical test, alpha of 5%, and is above the evaluation threshold (No criteria met)

3.4.3 Buena Creek

Station CBBUR1 is located in HA 904.32 off Santa Fe Ave and Azalea Rd. (GPS 33.17225N 117.20887W) This station had the lowest average concentration of specific conductance at 1.839 measured at all the stations.

Water Chemistry (Table 3-7.1)

Water quality objectives for total nitrogen, total phosphorus and sulfate exceeded Basin Plan objectives in all samples. Concentrations of nitrite/nitrate – nitrogen were the second highest in the watershed, approximately 7 times greater than the station with the third highest levels.

OP Pesticides that were detected included demeton-s, diazinon, dimethoate, disulfoton, mevinphos, and Naled(Dibrom). Diazinon was the most crevalent, exceeding the MDL in one sample and was detected but not quantifiable in two others. The sample that exceeded the MDL was below the Regional Board numeric argets in the Chollas Creek TMDL (Loading Capacity) that were set equal to the Children Department of Fish and Game's water quality criteria for the protection of the Children aquatic organisms from diazinon. The acute water quality criterion of 0.08 ug/L protects aquatic life from short-term exposure to diazinon, while the chronic criterian of 0.05 ug/L protects aquatic life from long-term diazinon exposure.

OC Pesticides were detected more often at this location than any other location in the Carlsbad HU. There was 21 times that an OC pesticide was detected at CBBUR1, whereas Station CBCWC2, having 9 detections, had the next highest number. OC Pesticides that were detected included aldrin, chlordane (cis), chlordane (gamma), dacthal, DDD(o,p'), DDD(p,p'), DDE(p,p'), DDT(p,p'), dieldrin, endrin, HCH (alpha), HCH (delta), Nonachlor (trans), and oxadiazon. DDE (p,p') and oxadiazon was detected in all four samples,

The Trianzine Herbicides that were detected in a single sample at levels below the RL were propazine, secbumeton, and terbuthylazine.

Toxicity (Table 3-7.2)

The results for one of the water samples were significant compared to negative control based on statistical test, alpha of less than 5%, and less than the evaluation threshold (Code SL) in testing on ceriodaphnia (young/female) and in another on selenastrum. The march sample of sediment was SL for Hyalella growth and survival.

Table 3-7.1 Monitoring Results Station CBBUR1 – Buena Creek

STATION 904CBBUR1		Thusabald				Sampl	eDate	
		Threshold Value	Source	3/12/02		4/23/02	6/3/02	9/17/02
Analyte	Units	Value		Value Not	tes	Value Notes	Value Notes	Value Notes
General/Physical		0.5.0.5	D.D.	7.44		0.00	0.45	0.50
pH	units	6.5 - 8.5	BP	7.41		8.08	8.15	6.59
Specif. Conduct.	mS/cm			1.627		1.934	1.961	1.834
Temp.	°C	00	DD	17.46		15.41	19.19	18.78
Turbidity	ntu	20	BP	ND 2		1.6 0.48	3.5 ND	0.54 ND
Velocity Sat.Oxygen	fps %			94.6		91.1	92.5	107.7
Inorganics	70			94.0		91.1	92.5	107.7
Alkalinity as CaCO3	mg/L	20000	EPA	255		288	311	275
Ammonia as N	mg/L	7.97	EPA	0.07 a	a	0.38	0.07 b	0.07
Nitrate + Nitrite as N	mg/L	1	BP	15.2		16.8	19.4	10.1
Nitrogen, Total Kjeldahl	mg/L	1	BP	0.37 a	a	1.44	0.37 b	0.45
OrthoPhosphate as P	mg/L			0.174		0.127	0.159	0.127
Phosphorus, Total as P	mg/L	0.1	BP	0.18		0.12	0.16	0.14
Sulfate	mg/L	250	BP	280		413	394	404
Dissolved Metals								
Aluminum	μg/L	1000/200	MCL	7.49		0.676	1.86	0.805
Arsenic	μg/L	50	MCL	4 4		4.32	1.63	3.95
Cadmium	μg/L	4.1/11	CTR	0.0 4		-0.01 b	0.0278	0.0212
Chromium	μg/L	50	MC			0.192	0.133	0.211
Copper	μg/L	18/29	(TR	3.7		4.51	2.21	6.16
Lead	μg/L	6.2/160	(TR	0.01 b)	-0.01 b	-0.002 b	0.0363
Manganese Nickel	μg/L	50 110/950	I CL	35.2 0.724		20.1 1.27	117 0.544	36.8 0.916
Selenium	μg/L μg/L	20	CTR	3.59		3.67	2.05	3.22
Silver	μg/L μg/L	14/17	CTR	-0.01 b	\neg	-0.01 b	-0.008 b	0.0139
Zinc	μg/L μg/L	240/240	CTR	2.15	_	1.18	1.72	2.22
OP Pesticides	µg/∟	210/210	OTIT	2.10		1.10	1.72	
Demeton-s	μg/L	0.04/0.1	MDL/RL	0.04 a	a	-0.04 b	-0.04 b	-0.04 b
Diazinon	μg/L	0.01/0.02	MDL/RL	-0.005 b	5	0.013 a	0.013 a	0.017
Dimethoate	μg/L	0.03/0.05	MDL/RL	-0.03 b)	0.04 a	-0.03 b	-0.03 b
Disulfoton	μg/L	0.01/0.05	MDL/RL	0.03 a	a	-0.01 b	-0.01 b	-0.01 b
Mevinphos	μg/L	0.03/0.05	MDL/RL	0.04 a	a	-0.03 b	-0.03 b	-0.03 b
Naled(Dibrom)	μg/L	0.03/0.05	MDL/RL	0.04 a	a	-0.03 b	-0.03 b	-0.03 b
OC Pesticides								
Aldrin	μg/L	0.001/0.002	MDL/RL	-0.001 b		-0.001 b	0.001 a	-0.001 b
Chlordane, cis	μg/L	0.001/0.002	MDL/RL	-0.001 b	-	0.001 a	-0.001 b	-0.001 b
Chlordene, gamma	μg/L	0.001/0.002	MDL/RL	0.001 a	_	-0.001 b	-0.001 b	-0.001 b
Dacthal DDD(o,p')	μg/L	0.001/0.002 0.001/0.002	MDL/RL	-0.001 b	_	0.001 a -0.001 b	-0.001 b -0.001 b	0.00215 -0.001 b
DDD(0,p) DDD(p,p')	μg/L	0.001/0.002	MDL/RL MDL/RL	0.001 a		-0.001 b -0.001 b	-0.001 b	-0.001 b -0.001 b
DDE(p,p')	μg/L μg/L	0.001/0.002	MDL/RL	0.001	1	0.001 b	0.002	0.004
DDT(p,p')	μg/L μg/L	0.002/0.005	MDL/RL	0.003 a	a	-0.001 a	-0.002 b	-0.002 b
Dieldrin	μg/L	0.002/0.003	MDL/RL	-0.001 b		-0.001 b	0.002 B	-0.001 b
Endrin	μg/L	0.001/0.002		-0.001 b	-	-0.001 b	-0.001 b	0.00216
HCH, alpha	μg/L	0.001/0.002		-0.001 b		-0.001 b	0.001 a	-0.001 b
HCH, delta	μg/L	0.001/0.002		-0.001 b	_	0.001 a	-0.001 b	-0.001 b
Nonachlor, trans	μg/L	0.001/0.002		-0.001 b	5	0.001 a	-0.001 b	-0.001 b
Oxadiazon	μg/L	0.001/0.002	MDL/RL	0.001 a	3	0.006	0.007	0.0067
Trianzine Herbicides								
Propazine	μg/L	0.02/0.05	MDL/RL	-0.02 b)	0.035 a	-0.02 b	-0.02 b
Secbumeton	μg/L	0.02/0.05	MDL/RL	0.035 a	a [-0.02 b	-0.02 b	-0.02 b
Terbuthylazine	μg/L	0.02/0.05	MDL/RL	0.035 a	a	-0.02 b	-0.02 b	-0.02 b
PCBs								
none exceeding MDL or RL					_			
PAHs	//	0.00	ים	0.00		0.005	0.00	0.0105
Anthracene	μg/L	0.02	RL	-0.02		0.035	-0.02	-0.0125
Naphthalene	μg/L	0.02	RL	-0.02 -0.02		0.035 0.035	-0.02	-0.0125 -0.0125
Phenanthrene	μg/L	0.02	RL	-0.02		0.035	-0.02	-0.0125

Notes: a. Calculated value 1/2 distance between MDL and RL b. Less than MDL

Table 3-7.2 Toxicity Results Station CBBUR1 – Buena Creek

			Toxicity Speci	ies					
Station	Cerioda	phnia dubia	Selenastrum	Hvale	lla azteca				
CBBUR1	Cerioda	-	capricornutum	, and the second	,				
Sample Type:		grab	grab	integrated					
Matrix:		water	water	sediment					
Method	EPA 1994 (I	EPA 600/4-91/002)	EPA 1994 (EPA 600/4-91/002)	EPA 2000 (El	PA 600R-99/064)				
Eval Threshold		80%	80%		80%				
Stat Method		red T-test	Paired T-test		ed T-test				
Toxic Test Dur	7 days	7 days	4 days	10 days	10 days				
Toxic End Point	Survival (%)	Young/ female (#)	Total Cell Count	Growth (weight)	Survival (%)				
Unit	%	Num/Rep	cells/ml	mg/ind	%				
Rep Count	10	10	4	8	8				
3/12/2002									
Mean	100	24	4438000	0.185	94				
Std Dev	0	7	535/86	0.051	7.44				
Probability	0.172	0.363	0.2	0.001	0.095				
Pct Control	111.1	105	93.7	201	107				
Tox Sig Effect Code	NSG	NG	NSG	SG	NSG				
4/23/2002		J'							
Mean	100	18	4106000	0.15	56				
Std Dev	0	10	2739784	0.055	7.44				
Probability	0.5	0.147	0.259	0.002	0				
Pct Control	100	79.8	80.1	64.3	60				
Tox Sig Effect Code	NSG	NSL	NSG	SL	SL				
6/4/2002									
Mean	90	17	2838000	0.21	91				
Std Dev	31.6	10	173205	0.06	9.91				
Probability	0.278	0.217	0	0.008	0.304				
Pct Control	112.5	83.3	58	146	97.3				
Tox Sig Effect Code	NSG	NSG	SL	SG	NSG				
9/17/2002									
Mean	100	11	7803000	0.229 0.2	75 74				
Std Dev	0	4	1058348	0.06 0.059	20.6 18.5				
Probability	0.5	0.02	0.048	0.045 0.379	0.349 0.332				
Pct Control	100	66.5	119	82 96.6	95.2 95.3				
Tox Sig Effect Code	NSG	SL	SG	SG NSG	NSG NSG				

TOXIC SIG EFFECT CODES

SL - Significant compared to negative control based on statistical test, alpha of less than 5%, AND less than the evaluation threshold (Both criteria met)

NG - Significant compared to negative control based on statistical test, alpha less than 5%, BUT is greater than the evaluation threshold (Only the first criteria met)

NSL - Not significant compared to negative control based on statistical test, alpha less than 5%, but was less than the evaluation threshold (Second criteria met)

NSG - Not significant compared to negative control based on statistical test, alpha of 5%, and is above the evaluation threshold (No criteria met)

3.4.4 Buena Vista Creek

Station No. 904CBBVR4 is located in HA 904.21, north of Plaza Camino Real mall, south of Hwy 78, west of S. Vista Way in the City of Carlsbad. (GPS 33.18147N 117.32893W) In April and September, the pH was measured higher than the water quality objective.

Water Chemistry (Table 3-8.1)

Total nitrogen exceeded the Basin Plan objective in only 1 of the 4 samples. The average of the four samples was below the 1.0-mg/L objective. Two of the 4 samples slightly exceeded the sulfate objective, and the average was below the objective. However, water quality thresholds for diazinon, disulfoton, oxadiazon, terbuthylazine were persistently detected.

All four samples detected diazinon concentrations exceeding the MDL with one exceeding the Regional Board numeric targets in the Chollas Greek TMDL that were based on the California Department of Fish and Game's water quality criteria for the protection of freshwater aquatic organisms from diaz not. Turbe of the four samples detected disulfoton but at unquantifiable levels. Other Or the finder that were detected, but in single samples, included carbophenothion, demeten-synewaphos, and Naled(Dibrom).

Oxadiazon was detected in three samples, two of which were above MDL, and terbuthylazine was detected above MDL in two samples. Other OC Pesticides that were detected in single samples were dacthal, DDE (p,p'), endosulfan II, HCH (alpha), HCH (beta), and HCH (gamma).

The Trianzine Herbicides that were detected in a single sample at levels below the RL were atrazine, propazine, and secbumeton. Prometon was detected once and terbuthylazine twice above the RL.

Toxicity (Table 3-8.2)

Both water and sediment samples showed persistence of toxicity. The results for three of the four water samples were significant compared to negative control based on statistical test, alpha of less than 5%, and less than the evaluation threshold (Code SL) in testing on selenastrum. All four samples of sediment was SL for Hyalella survival with one sample also SL on Hyalella growth.

Table 3-8.1 Monitoring Results Station CBBVR4 - Buena Vista Creek

STATION 904CBBVR4	ON 904CBBVR4							SampleDate										
		Threshold		3/12	02	4/23/		6/3/	02	9/17/	02							
Analyte	Units	Value	Source		-	Values	-				-							
General/Physical	010																	
pH	units	6.5 - 8.5	BP	7.98		8.58		8.17		8.71								
Specif. Conduct.	mS/cm			2.179		2.285		2.3		2.349								
Temp.	⁰ C			16.11		23.05		21.9		22.16								
Turbidity	ntu	20	BP	3.7		2.8		21.0		0.85								
Velocity	fps	20	DI	2.01		ND		ND		0.00								
Sat.Oxygen				98.3		203.2		152.4		84.3								
Inorganics	/6			30.3		200.2		132.4		04.5								
Alkalinity as CaCO3	mg/L	20000	EPA	269		240		238		267								
Ammonia as N	mg/L	7.97	EPA	0.07	a	0.41		0.07	a	0.098								
Nitrate + Nitrite as N	mg/L	1	BP	0.775	a	0.313		0.128	C	0.030								
Nitrogen, Total Kjeldahl	mg/L	<u>'</u> 1	BP	0.773	а	0.37	а	0.120	a	0.43								
OrthoPhosphate as P	mg/L		DF	0.105	а	0.055	a	0.045	a	0.099								
Phosphorus, Total as P	mg/L	0.1	BP	0.103		0.033		0.043		0.099								
Sulfate	mg/L	250	BP	19		259		242		256								
Dissolved Metals	IIIg/L	230	DF	18		208		242		230								
Aluminum	ua/l	1000/200				4.4		1.39		-0.1	b							
Arsenic	μg/L	50	IC'			7.24		2.62		7.4	D							
Cadmium	μg/L	4.1/1		0.0545						0.0716								
Chromium	μg/L	50	401	1.37		0.0462		0.0106 0.127		0.0716								
	μg/L	18/29	CTR															
Copper	μg/L		CTR	2.12	L .	2.46	L-	1.71		2.26								
Lead	μg/L	6.2/16	_	-0.01	b	-0.01	b	0.0148		0.0363								
Manganese	μg/L	50	MCL	98.6		64.3		2.85		23.3								
Nickel	μg/L	110/950	CTR	0.516		1.45		0.427		1.55								
Selenium	μg/L	20	CTR	5.53	-	6.08	1.	2.54		5.25	1.							
Silver	μg/L	14/17	CTR	-0.01	b	-0.01	b	-0.008	b	-0.008	b							
Zinc	μg/L	240/240	CTR	3.98		1.34		1.48		6.62								
OP Pesticides	//	0.00/0.05	MDL / DL	0.04	_	0.00	I	0.00	- 1-	0.00								
Carbophenothion	μg/L	0.03/0.05	MDL / RL	0.04	a	-0.03	b,c	-0.03	b	-0.03	b							
Demeton-s	μg/L	0.04/0.05	MDL / RL	0.04	а	-0.04	b,c	-0.04	b	-0.04	b							
Diazinon	μg/L	0.005/0.02	MDL / RL	0.039		0.033	С	0.033		0.162								
Disulfoton	μg/L	0.01/0.05	MDL / RL	0.03	а	0.03	a,c	0.03	<u>a</u>	-0.01	b							
Mevinphos	μg/L	0.03/0.05	MDL / RL	0.04	а	-0.03	b,c	-0.03	b	-0.03	b							
Naled(Dibrom)	μg/L	0.03/0.05	MDL / RL	0.04	а	-0.03	b,c	-0.03	b	-0.03	b							
OC Pesticides	//	0.004/0.000	MDL / DL	0.004		0.004	I.	0.004		0.004								
Dacthal	μg/L	0.001/0.002	MDL / RL	-0.001		0.001	b	-0.001	b	-0.001	b							
DDE(p,p')	μg/L	0.001/0.002	MDL / RL	-0.001	b	0.004		-0.001	b	-0.001	b							
Endosulfan II	μg/L	0.001/0.002	MDL / RL	-0.001	b	-0.001	b	-0.001	b	0.0028								
HCH, alpha	μg/L	0.001/0.002	MDL / RL	-0.001	b	-0.001	b	-0.001	b	0.0015	а							
HCH, beta	μg/L	0.001/0.002	MDL / RL	-0.001	b	-0.001	b	-0.001	b	0.0015	a							
HCH, delta	μg/L	0.001/0.002	MDL / RL	-0.001	b	-0.001	b	-0.001	b	-0.001	b							
HCH, gamma	μg/L	0.001/0.002			b	0.002		-0.001	b	-0.001	b							
Oxadiazon	μg/L	0.001/0.002	MDL / RL	0.001	а	0.011		0.008		-0.001	b							
Trianzine Herbicides		0.00/2.25	MDL /D:	0.005														
Atrazine	μg/L	0.02/0.05	MDL / RL	0.035	a	-0.02	b	-0.02	<u>b</u>	-0.02	b							
Prometon	μg/L	0.02/0.05	MDL / RL	-0.02	b	-0.02	b	-0.02	b	0.035	a							
Propazine	μg/L	0.02/0.05	MDL / RL	-0.02	b	-0.02	b	0.035	a	-0.02	b							
Secbumeton	μg/L	0.02/0.05	MDL / RL	0.2		-0.02	b	-0.02	<u>b</u>	-0.02	b							
Terbuthylazine	μg/L	0.02/0.05	MDL / RL	0.25		0.287		-0.02	b	-0.02	b							
PCBs																		
none exceeding MDL or RL																		
PAHs																		
none exceeding MDL or RL																		

Abbreviations: MDL - method detection level

RL - reporting level μg/L - micrograms per liter

Notes: a. Calculated value 1/2 distance between MDL and RL

b. Less than MDL

c. Holding time violation occurred, flagged by QAO

Table 3-8.2 Toxicity Results Station CBBVR4 – Buena Vista Creek

		-	Toxicity Speci	es						
Station	G . 1		Selenastrum	** 1.1						
CBBVR4	Cerioda	phnia dubia	capricornutum	Hyalella azteca						
Sample Type:		grab	grab		egrated					
Matrix:		water	water	sec	liment					
Method	EPA 1994 (I	EPA 600/4-91/002)	EPA 1994 (EPA 600/4-91/002)	EPA 2000 (EI	PA 600R-99/064)					
Eval Threshold		80%	80%		80%					
Stat Method		red T-test	Paired T-test		ed T-test					
Toxic Test Dur	7 days	7 days	4 days	10 days	10 days					
Toxic End Point	Survival (%)	Young/ female (#)	Total Cell Count	Growth (weight)	Survival (%)					
Unit	%	Num/Rep	cells/ml	mg/ind	%					
Rep Count	10	10	4	8	8					
3/12/2002				1						
Mean	100	22	3823000	0.118	53					
Std Dev	0	6	170 83	0.06	37.3					
Probability	0.172	0.349	0.	0.171	0.017					
Pct Control	111.1 95.2		80.7	129	60					
Tox Sig Effect Code	NSG NSG		SG	NSG	SL					
4/23/2002		יע								
Mean	100	24	3963000	0.05	1					
Std Dev	0	10	312570	0.141	3.54					
Probability	0.5	0.315	0.017	0.004	0					
Pct Control	100	109	77.4	21.5	1.33					
Tox Sig Effect Code	NSG	NSG	SL	SL	SL					
6/4/2002										
Mean	90	16	3613000	0.114	24					
Std Dev	31.6	6	346554	0.074	20					
Probability	0.278	0.144	0.001	0.149	0					
Pct Control	112.5	81.6	73.8	79.2	25.3					
Tox Sig Effect Code	NSG	NSG	SL	NSL	SL					
9/17/2002										
Mean	100	11	3768000	0.348 0.17	21 25					
Std Dev	0	2	107083	0.137 0.077	20.3 13.3					
Probability	0.5	0.016	0.001	0.142 0.111	0 0					
Pct Control	100	67.1	57.5	125 81.9	27 32.9					
Tox Sig Effect Code	NSG	SL	SL	NSG NSG	SL SL					

TOXIC SIG EFFECT CODES

SL - Significant compared to negative control based on statistical test, alpha of less than 5%, AND less than the evaluation threshold (Both criteria met)

NG - Significant compared to negative control based on statistical test, alpha less than 5%, BUT is greater than the evaluation threshold (Only the first criteria met)

NSL - Not significant compared to negative control based on statistical test, alpha less than 5%, but was less than the evaluation threshold (Second criteria met)

NSG - Not significant compared to negative control based on statistical test, alpha of 5%, and is above the evaluation threshold (No criteria met)

3.4.5 Cottonwood Creek

Station No. 904CBCWC2 is located in HA 904.51, between Hwy 1 and Third Street and south of B St., north of tennis courts in the City of Encinitas. (GPS 33.04852N 117.29513W) The site is in a restored reach above Moonlight State Beach. The pH in September exceeded the water quality objective.

Water Chemistry (Table 3-9.1)

Water quality objectives for total nitrogen, total phosphorus, and sulfate were exceeded in all samples. Average levels of total nitrogen, nitrite and nitrate nitrogen at Station CBCWC2 were the highest in the Carlsbad HU, more than twice the levels of the next highest station, CBBUR1 on Buena Creek.

Diazinon exceeded MDL in four samples, with the tracen sample exceeding CDFG chronic criterion of 0.05 ug/L. Disulfoton was detected but not quantified in three samples. Carbophenothion, dimethoate, and mali this navire detected in single samples.

OC Pesticides that were detected only cace were dacthal, endosulfan sulfate, HCH (delta), and Nonachlor (trans). DDE (p,p was detected in two samples, one above and one below the MDL. HCH, alpha was detected in two samples, both below the MDL and oxadiazon was also detected in two samples, both above the MDL.

The Trianzine Herbicides that were detected in a single sample at levels below the RL were propazine, secbumeton and terbuthylazine.

Toxicity (Table 3-9.2)

Both water and sediment samples showed persistence of toxicity. The results for three of the four water samples were significant compared to negative control based on statistical test, alpha of less than 5%, and less than the evaluation threshold (Code SL) in testing on ceriodaphnia (young/female) and selenastrum. All four samples of sediment was SL for Hyalella survival with one sample also SL on Hyalella growth.

Table 3-9.1 Monitoring Results Station CWC2 – Cottonwood Creek

STATION 904CCWC2		Thursdaylal										
		Threshold	Source	03/13	SampleD 03/13/02 04/23/02			06/04/	02	0	9/17/02	
Analyte	Units	Value		Values	Notes	Values 1	Votes	Values I	Notes	Values	Values	Notes
General/Physical												
pH	units	6.5 - 8.5	BP	7.76		7.6		7.52		9.06		
Specif. Conduct.	mS/cm			4.646		4.925		4.625		4.568		
Temp.	°C			18.75		20.51		19.54		21.17		
Turbidity	ntu	20	BP	2		1.6		1.2		5.6		-
Velocity	fps			0.707		1.08		0		0.456		
Sat.Oxygen	%			98.6		124.1		84.5		95.8		
Inorganics												
Alkalinity as CaCO3	mg/L	20000	EPA	158		154		155		154		
Ammonia as N	mg/L	7.97	EPA	0.07	а	0.38		0.07	а	0.2		
Nitrate + Nitrite as N	mg/L	1	BP	31.4		38		40.8		40.3		
Nitrogen, Total Kjeldahl	mg/L	1	BP	0.37	а	0.8		0.37	а	0.69		
OrthoPhosphate as P	mg/L			0.126		0 19		0.136		0.148		
Phosphorus, Total as P	mg/L	0.1	BP	0.16).14		0.19		0.18		
Sulfate	mg/L	250	BP	412		591		542		516		
Dissolved Metals												
Aluminum	μg/L	1000/200	MCL	3. 2		2.82		3.62		1.57	1.45	d
Arsenic	μg/L	50	1VIC	5 13		5.46		6.92		4.28	4.19	d
Cadmium	μg/L	4.1/11	CTI	0 25		0.0527		0.0529		0.083	0.08	d
Chromium	μg/L	50	MQ	2.41		0.684		0.334		0.736	0.72	d
Copper	μg/L	18/29	C/R	3.49		4.16		4.76		4.04	4.17	d
Lead	μg/L	6.2/160	CTR	0.0175		0.0454		0.0438		0.059	0.0591	d
Manganese	μg/L	50	MCL	125		21.5		68.7		11.4	11.1	d
Nickel	μg/L	110/950	CTR	2.23		3.02		2.17		2.25	1.96	d
Selenium	μg/L	20	CTR	17.7		19.5		6.62		15.2	14.7	d
Silver	μg/L	14/17	CTR	-0.01	b	-0.01	b	-0.008	b	0.016	0.0195	d
Zinc	μg/L	240/240	CTR	13.5	-	7.48		3.42		8.83	8.76	d
OP Pesticides	p.g/ =											
Carbophenothion	μg/L	0.03/0.05	MDL / RL	0.04	а	-0.03	b	-0.03	b	-0.03		b
Diazinon	μg/L	0.02/0.05	MDL / RL	0.053		0.0225		0.03		0.0179		
Dimethoate	μg/L	0.03/0.05	MDL / RL	-0.03	b	0.04	а	-0.03	b	-0.03		b
Disulfoton	μg/L	0.01/0.05	MDL / RL	0.03	а	0.03	a	0.03	a	-0.01		b
Malathion	μg/L	0.03/0.05	MDL / RL	0.037	а	-0.03	b	-0.03	b	-0.03		b
OC Pesticides	F-J-											
Dacthal	μg/L	0.001/0.002	MDL / RL	-0.001	b	0.001	а	-0.001	b	-0.001	b	b
DDE(p,p')	μg/L		MDL / RL	-0.001	b	0.002		0.001	а	-0.001	b	b
DDT(p,p')	μg/L		MDL / RL	0.003	а	-0.002	b	0.003	а	-0.002	b	b
Endosulfan sulfate	μg/L	0.001/0.002	MDL / RL	0.001	а	-0.001	b	-0.001	b	-0.001	b	b
HCH, alpha	μg/L	0.001/0.002		0.001	а	-0.001	b	0.001	a	-0.001	b	b
HCH, delta	μg/L	0.001/0.002		-0.001	b	0.001	a	-0.001	b	-0.001	b	b
Nonachlor, trans	μg/L	0.001/0.002		-0.001	b	0.001	a	-0.001	b	-0.001	b	b
Oxadiazon	μg/L	0.001/0.002		1.86		0.077		-0.001	b	-0.001	b b	b
Trianzine Herbicides												
Propazine	μg/L	0.02/0.05	MDL / RL	-0.02	b	-0.02	b	0.035	а	-0.02		b
Secbumeton	μg/L	0.02/0.05	MDL / RL	-0.02	b	-0.02	b	0.035	а	-0.02		b
Terbuthylazine	μg/L	0.02/0.05	MDL / RL	-0.02	b	-0.02	b	0.035	а	-0.02		b
PCBs												
none exceeding MDL or RL												
PAHs												
none exceeding MDL or RL												

Abbreviations: MDL - method detection level RL - reporting level $\mu g/L$ - micrograms per liter

Notes: a. Calculated value 1/2 distance between MDL and RL

b. Less than MDL

c. Holding time violation occurred, flagged by QAO

d. First sample for September is a blind duplicate. September data averaged together before used in calculations

Table 3-9.2 Toxicity Results Station CBCWC2 – Cottonwood Creek

	Toxicity Species												
Station CBCWC2	Cerioda	phnia dubia	Selenastrum capricornutum	•	la azteca								
Sample Type:		grab	grab		grated								
Matrix:		water	water	sed	liment								
Method	EPA 1994 (1	EPA 600/4-91/002)	EPA 1994 (EPA 600/4-91/002)	EPA 2000 (EF	PA 600R-99/064)								
Eval Threshold		80%	80%		30%								
Stat Method		red T-test	Paired T-test		ed T-test								
Toxic Test Dur	7 days	7 days	4 days	10 days	10 days								
Toxic End Point	Survival (%)	Young/ female (#)	Total Cell Cour	Growth (weight)	Survival (%)								
Unit	%	Num/Rep	cell /ml	mg/ind	%								
Rep Count	10	10	$\bullet \land \vdash \vdash$	8	8								
3/12/2002			JAI '										
Mean	100	7	1878000	0.154	34								
Std Dev	0		587991	0.078	20								
Probability	0.084	0.	0	0.036	0								
Pct Control	125	101	30.6	167	38.6								
Tox Sig Effect Code	NSG	NSG	SL	SG	SL								
4/23/2002													
Mean	100	5	3183000	0.186	68								
Std Dev	0	3	529497	0.083	13.9								
Probability	0.5	0	0.002	0.089	0								
Pct Control	100	20.2	62.1	79.9	72								
Tox Sig Effect Code	NSG	SL	SL	NSL	SL								
6/4/2002													
Mean	100	8	3863000	0.175	25								
Std Dev	0	3	627030	0.104	22								
Probability	0.084	0.001	0.019	0.216	0								
Pct Control	125	38.2	78.9	122	26.7								
Tox Sig Effect Code	NSG	SL	SL	NSG	SL								
9/17/2002													
Mean	100	11	7313000	0.208 0	10 0								
Std Dev	0	5	1067880	0.142 0	13.1 0								
Probability	0.5	0.038	0.133	0.2 0	0 0								
Pct Control	100	69.6	112	74.7 0	12.7 0								
Tox Sig Effect Code	NSG	SL	NSG	NSL SL	SL SL								

TOXIC SIG EFFECT CODES

SL - Significant compared to negative control based on statistical test, alpha of less than 5%, AND less than the evaluation threshold (Both criteria met)

NG - Significant compared to negative control based on statistical test, alpha less than 5%, BUT is greater than the evaluation threshold (Only the first criteria met)

NSL - Not significant compared to negative control based on statistical test, alpha less than 5%, but was less than the evaluation threshold (Second criteria met)

NSG - Not significant compared to negative control based on statistical test, alpha of 5%, and is above the evaluation threshold (No criteria met)

3.4.6 Encinitas Creek

Station 904CBENC2 is located in HA 904.51, accessed via El Camino Real and Leucadia Blvd., within 20' of El Camino Real in the City of Encinitas. (GPS 33.06828N 117.26261W) This station had the lowest average temperature at 15.7°. The pH exceeded the water quality objective in September.

Water Chemistry (Table 3-10.1)

Concentrations of total nitrogen slightly exceeded water quality objectives on two occasions, with the average concentration of the four samples slightly below the objective. However, water quality objectives for total phosphorus, and sulfate were persistently exceeded, with average concentrations among the highest in the Carlsbad HU for both constituents.

OP Pesticides detected a single time were dimethoate, die tathion, and methidathion. All four samples detected diazinon above the MDL with two of the samples exceeding CDFG chronic criterion of 0.05 ug/L. Disulfoton exceeded the MDLs in three samples.

OC Pesticides detected a single time very dath. DDE(p,p'), endosulfan I, endosulfan II, and endrin aldehyde. Oxadiazon axc e led the MDLs in three samples Trianzine Herbicides

Terbuthylazine was detected in all four samples, with three samples exceeding the MDL and secbumeton detected at less than the RL in two samples. The other Trianzine Herbicide that was detected a single time was prometon below the RL.

Toxicity (Table 3-10.2)

Water samples showed persistence of toxicity. The results of the April and June samples were significant compared to negative control based on statistical test, alpha of less than 5%, and less than the evaluation threshold (Code SL) in testing on ceriodaphnia (young/female). The results for the March sample were SL for ceriodaphnia (survival) and selenastrum. The April sediment sample result was SL for Hyalella (both survival and growth).

Table 3-10.1 Monitoring Results Station CBENC2 – Encinitas Creek

STATION 904CBENC2				SampleDate										
OTATION SOFOBEROS		Threshold	Source	03/13/	02	0	4/23/02	Date	06/04	/02	09/17	/02		
Analyte	Units	Value	Cource	Values	-	Values '		Notes		-	Values			
General/Physical	00			7 4		7 4.14 5		110100	7 4.14.00		74.455	110100		
pH	units	6.5 - 8.5	BP	7.61		7.49			7.58		8.92			
Specif. Conduct.	mS/cm			3.451		4.49			4.502		3.844			
Temp.	°C			13.23		15.83			15.8		18			
Turbidity	ntu	20	BP	4.4		7			6.45		4.7			
Velocity	fps			0.255		0			0.40		0			
Sat.Oxygen	%			70.9		89.5			72.4		82.8			
Inorganics				70.0		00.0			72.1		02.0			
Alkalinity as CaCO3	mg/L	20000	EPA	262		268			275		259			
Ammonia as N	mg/L	7.97	EPA	0.07	a	0.32			0.07		0.077			
Nitrate + Nitrite as N	mg/L	1	BP	0.298	u	0.513			0.442	u	0.413			
Nitrogen, Total Kjeldahl	mg/L	1	BP	0.37	а	0.72			0.37	а	0.64			
OrthoPhosphate as P	mg/L	•		0.116		0.161			0.215		0.32			
Phosphorus, Total as P	mg/L	0.1	BP	0.18		23			0.31		0.38			
Sulfate	mg/L	250	BP	683		926			938		869			
Dissolved Metals	mg/ =	200		1		. 020								
Aluminum	μg/L	1000/200	MCL	1		1.57	1.49	d	6.2		0.427			
Arsenic	μg/L	50	May	4.1 3		4.28	4.4	d	6.08		3.84			
Cadmium	μg/L	4.1/11	ĈŦĒ	01/16	\	-0.01	-0.01	b,d	0.0476		0.03			
Chromium	μg/L	50	MCL	3.99		0.465	0.479	d	0.37		0.503			
Copper	μg/L	18/29	CI	3.3		3.7	3.63	d	4.31		3.6			
Lead	μg/L	6.2/160	JIR	-0.01	b	-0.01	0.0144	b,d	0.0719		0.0541			
Manganese	μg/L	50	MCL	246	~	278	274	d	86.7		205			
Nickel	μg/L	110/950	CTR	2.2		3.45	3.45	d	2.17		4.05			
Selenium	μg/L	20	CTR	10.5		10.2	10.1	d	8.09		8.89			
Silver	μg/L	14/17	CTR	-0.01	b	-0.02	-0.01	b,d	-0.008		-0.008	b		
Zinc	μg/L	240/240	CTR	12.3	~	11.6	11.6	d	4.22		16.6			
OP Pesticides	p.9/ =							-						
Diazinon	μg/L	0.02/0.05	MDL / RL	0.4		0.0632			0.051		0.04			
Dimethoate	μg/L	0.03/0.05	MDL / RL	-0.03	b	0.04		а	-0.03	b	-0.03	b		
Dioxathion	μg/L	0.03/0.05	MDL / RL	0.04	а	-0.03		b	-0.03	b	-0.03	b		
Disulfoton	μg/L	0.01/0.05	MDL / RL	0.113		0.095			0.074		-0.01	b		
Methidathion	μg/L	0.03/0.05	MDL / RL	-0.03	b	0.04		а	-0.03	b	-0.03	b		
OC Pesticides	F-O-													
Dacthal	μg/L	0.001/0.002	MDL / RL	-0.001	b	0.001		а	-0.001	b	-0.001	b		
DDE(p,p')	μg/L	0.001/0.002		-0.001	b	0.01			-0.001	b	-0.001	b		
Endosulfan I	μg/L	0.001/0.002		-0.001	b	0.001		а	-0.001	b	-0.001	b		
Endosulfan II	μg/L	0.001/0.002	MDL / RL	-0.001	b	0.001		а	-0.001	b	-0.001	b		
Endrin Aldehyde	μg/L	0.001/0.002	MDL / RL	-0.002	b	0.007			-0.002	b	-0.002	b		
Oxadiazon	μg/L	0.001/0.002		0.142		0.057			0.053		-0.001	b		
Trianzine Herbicides														
Prometon	μg/L	0.02/0.05	MDL / RL	-0.02	b	-0.02		b	-0.02	b	0.038	а		
Secbumeton	μg/L	0.02/0.05	MDL / RL	0.25		-0.02		b	0.035	а	-0.02	b		
Terbuthylazine	μg/L	0.02/0.05	MDL / RL	0.5		1.65			0.55		0.035	а		
PCBs														
none exceeding MDL or RL														
PAHs														
none exceeding MDL or RL														
· · · · · · · · · · · · · · · · · · ·														

Abbreviations: MDL - method detection level

RL - reporting level μg/L - micrograms per liter

Notes: a. Calculated value 1/2 distance between MDL and RL

b. Less than MDL

c. Holding time violation occurred, flagged by QAO d. First sample for April is a blind duplicate. April data averaged together before used in calculations

Table 3-10.2 Toxicity Results Station CBENC2 – Encinitas Creek

	Toxicity Species												
Station CBENC2	Cerioda	phnia dubia	Selenastrum capricornutum	,	lla azteca								
Sample Type:		grab	grab		grated								
Matrix:		water	water	sec	diment								
Method	EPA 1994 (1	EPA 600/4-91/002)	EPA 1994 (EPA 600/4-91/002)	EPA 2000 (E	PA 600R-99/064)								
Eval Threshold		80%	80%	;	80%								
Stat Method		red T-test	Paired T-test		ed T-test								
Toxic Test Dur	7 days	7 days	4 days	10 days	10 days								
Toxic End Point	Survival (%)	Young/ female (#)	Total Cell Count	Growth (weight)	Survival (%)								
Unit	%	Num/Rep	cells/ml	mg/ind	%								
Rep Count	10	10	4	8	8								
3/12/2002													
Mean	0	(1)	4 830 0	0.151	85								
Std Dev	0	(1)	2 294	0.086	9.26								
Probability	0	(1)		0.054	0.309								
Pct Control	0	(1)	76.4	164	97.1								
Tox Sig Effect Code	SL	NA J	SL	NSG	NSG								
4/23/2002													
Mean	90	11	4813000	0.091	74								
Std Dev	31.6	4	268017	0.03	11.9								
Probability	0.5	0.001	0.224	0	0.001								
Pct Control	90	48.3	93.9	39.3	78.7								
Tox Sig Effect Code	NSG	SL	NSG	SL	SL								
6/4/2002													
Mean	100	12	4198000	0.133	81								
Std Dev	0	5	364600	0.03	12.5								
Probability	0.084	0.008	0.016	0.196	0.02								
Pct Control	125	58.4	85.8	92.3	86.7								
Tox Sig Effect Code	NSG	SL	SG	NSG	SG								
9/17/2002													
Mean	100	21	6678000	0.17 0.211	90 66								
Std Dev	0	6	821787	0.03 0.078	12 20								
Probability	0.5	0.044	0.402	0 0.452	0.074 0.109								
Pct Control	100	132	102	61.1 102	115 85.6								
Tox Sig Effect Code	NSG	SG	NSG	SL NSG	NSG NSG								

Note: (1) No surviving adults

TOXIC SIG EFFECT CODES

SL - Significant compared to negative control based on statistical test, alpha of less than 5%, AND less than the evaluation threshold (Both criteria met)

NG - Significant compared to negative control based on statistical test, alpha less than 5%, BUT is greater than the evaluation threshold (Only the first criteria met)

NSL - Not significant compared to negative control based on statistical test, alpha less than 5%, but was less than the evaluation threshold (Second criteria met)

NSG - Not significant compared to negative control based on statistical test, alpha of 5%, and is above the evaluation threshold (No criteria met)

Escondido Creek

Station No. 904CBESC5 is located in HA 904.62, within the Elfin Forest Recreational Reserve, 9200 Harmony Grove Road. (GPS 33.08559N 117.15037W) The pH water quality objective was exceeded on two occasions.

Water Chemistry (Table 3-11.1)

Water quality objectives for total nitrogen and sulfate were exceeded in all samples. Total phosphorus was exceeded in half the samples, but the average for all samples was slightly below the objective.

Diazinon exceeded the MDL in all samples with the results of the April 24 sample exceeding both CDFG chronic and acute criteria. Disulfoton was detected on 3 of the 4 dates, but all below the MDL. Oxadiazon was detected and quantified on three of the four dates and in the test sample but not the field blank of the fourth data. At azine was detected in April but below the RL and in the March field blank, but not the sample. Secbumeton was detected in March and June and terbuthylazine in March April and June. Dimethoate, dioxathion, aldrin, endosulfan II, endrin aldeh vde IX H beta), HCH (delta), and prometon were all detected a single time.

Toxicity: (Table 3-11.2)

One of the four water samples were significant compared to negative control based on statistical test, alpha of less than 5%, and less than the evaluation threshold (Code SL) in testing on ceriodaphnia (survival) and one sample of sediment was SL for Hyalella (growth). Water and sediment samples did not show a persistence of toxicity.

Table 3-11.1 Monitoring Results Station CBESC5 – Escondido Creek

STATION 904CESC5		Threshold							Samp	leDate					
		Value	Source		3/13/02		_	1/23/02			06/04/02			9/17/02	
Analyte	Units			Values	values	Notes	Values	values	Notes	values	Values	Notes	values	values	Notes
General/Physical		0.5.05	DD.	0.54			0.10			0.77			_		
pH	units	6.5 - 8.5	BP	8.54			8.18			8.77			7		
Specif. Conduct.	mS/cm			1.908			1.963			1.864			1.819		
Temp.	°C			12.1			16.31			21.8			19.15		
Turbidity	ntu	20	BP	0.81			0.4			0.74			2.4		
Velocity	fps			1.74			0.768			0.562			0.342		
Sat.Oxygen	%	-		100			101.5			143.3			126.5		
Inorganics															
Alkalinity as CaCO3	mg/L	20000	EPA	289	298	d	295	297	d	257	257	d	286	286	
Ammonia as N	mg/L	7.97	EPA	0.07	0.07	a,d	0.07	0.11	a,d	0.07	0.07	a,d	0.061	0.068	
Nitrate + Nitrite as N	mg/L	1	BP	6.38	6.28	d	6.91	6.9	d	6.16	6	d	7.65	6.28	d
Nitrogen, Total Kjeldahl	mg/L	1	BP	0.37	0.37	a,d	0.37	0.37	a,d	0.57	0.37	a,d	0.38	0.45	d
OrthoPhosphate as P	mg/L			0.12	0.126	d	0.074	0.074	d	0.025	0.027	d	0.0864	0.087	d
Phosphorus, Total as P	mg/L	0.1	BP	0.12	0.13	d	0.08	0.08	d	0.04	0.04	a,d	0.138	0.113	
Sulfate	mg/L	250	BP	326	312	d	426	431	d	390	374	d	372	386	d
Dissolved Metals							1								
Aluminum	μg/L	1000/200	MCL	1.04	1.04	d	J46	0.852	d	1	6.81	d	-0.1	-0.1	b,d
Arsenic	μg/L	50	MCL	1.93	2.08	d	1.62	1.64	d	1.88	5.66	d	1.91	1.7	d
Cadmium	μg/L	4.1/11	CTR	0.0434	0.00	g	0 204	.0161	d	0.0152	0.059	d	0.0482	0.0457	d
Chromium	μg/L	50	MCL	3.86	.58	ΠP	1.42	1.38	d	0.082	0.396	d	0.909	0.93	d
Copper	μg/L	18/29	CTR	3 04		1	3.4	3.33	d	1.89	4.18	d	2.7	2.72	d
Lead	μg/L	6.2/160	CTR	-0 01	.(125	,d	-0.01	-0.01	b,d	-0.002	0.0524	b,d	0.0342	0.0363	d
Manganese	μg/L	50	MCL	12.7	13	d	2.68	2.65	d	109	95	d	14.4	14.9	d
Nickel	μg/L	110/950	CTR	0.: 0=	0.698	d	0.706	0.686	d	0.564	2.48	d	1.92	1.84	d
Selenium	μg/L	20	CTR	5.22	5.65	d	4.3	4.36	d	1.43	7.66	d	5.79	5.08	d
Silver	μg/L	14/17	CTR	-0.01	-0.01	b.d	-0.01	-0.01	b,d	0.0147	-0.008	b.d	-0.008	-0.008	b,d
Zinc	μg/L	240/240	CTR	9.45	9.74	d	4.4	4.67	d	1.39	3.75	d	4.46	4.38	d
OP Pesticides															
Diazinon	μg/L	0.02/0.05	MDL / RL	0.044	0.037		0.295	0.325		0.028	0.037		0.025	0.029	
Dimethoate	μg/L	0.03/0.05	MDL / RL	-0.03	-0.03	b.d	0.04	0.04	a.d	-0.03	-0.03	b.d	-0.03	-0.03	b.d
Dioxathion	μg/L	0.03/0.05	MDL / RL	0.04	0.04	b.d	-0.03	-0.03	b,d	-0.03	-0.03	b.d	-0.03	-0.03	b,d
Disulfoton	μg/L	0.01/0.05	MDL / RL	0.03	0.03	a,d	0.03	0.03	a,d	0.03	0.03	a,d	-0.01	-0.01	b,d
Tetrachlorvinphos	μg/L	0.03/0.05	MDL / RL	-0.03	-0.03	b,d	-0.03	0.04	a,b,d	-0.03	-0.03	b.d	-0.03	-0.03	
OC Pesticides						,									
Aldrin	μg/L	0.001/0.002	MDL / RL	-0.001	-0.001	b.d	-0.001	-0.001	b,d	-0.001	0.001	a,d	-0.001	-0.001	b.d
Dacthal	μg/L	0.001/0.002		-0.001	-0.001	b.d	0.001	0.001	a,d	-0.001	-0.001	b.d	-0.001	-0.001	b,d
DDE(p,p')	μg/L	0.001/0.002		-0.001	-0.001	b.d	0.003	0.003	d	-0.001	-0.001	b,d	-0.001	-0.001	b,d
DDT(p,p')	μg/L	0.002/0.005		-0.002	-0.002	b.d	-0.002	-0.002	b,d	0.003	0.003	a,d	-0.002	-0.002	
Endosulfan II	μg/L	0.001/0.002		-0.001	-0.001	b.d	-0.001	-0.001	b,d	-0.001	-0.001	b,d	-0.001	0.0035	d
Endrin Aldehyde	μg/L	0.002/0.005		-0.002	-0.002	b.d	0.003	-0.002	d	-0.002	-0.002	b,d	-0.002	-0.002	
HCH, alpha	μg/L	0.001/0.002		-0.001	-0.001	b.d	-0.001	-0.001	b,d	0.001	0.001	a,d	-0.001	-0.001	b,d
HCH, beta	μg/L	0.001/0.002		-0.001	-0.001	b.d	-0.001	-0.001	b,d	-0.001	-0.001	b,d	-0.001	0.016	
HCH, delta	μg/L	0.001/0.002		-0.001	-0.001	b,d	-0.001	-0.001	b,d	-0.001	-0.001	b,d	-0.001	0.002	
Oxadiazon	μg/L	0.001/0.002		0.025	0.024	d	0.011	0.013	d	0.0125	0.014	d d	0.012		d
Trianzine Herbicides	µg/ ⊏	0.001/0.002	WDE7 ITE	0.020	0.021	ŭ	0.011	0.010	<u> </u>	0.0120	0.011	<u> </u>	0.012	0.001	
Atrazine	μg/L	0.02/0.05	MDL / RL	0.035	-0.02	a h d	0.035	0.035	a,d	-0.02	-0.02	b.d	-0.02	-0.02	b,d
Prometon	μg/L		MDL / RL	-0.02	-0.02		-0.02	-0.02		0.035	-0.02		-0.02		
Propazine	μg/L		MDL / RL	-0.02	-0.02		-0.02	-0.02		0.035	0.035	a,b,u a,d	-0.02	-0.02	
Secbumeton		0.02/0.05	MDL / RL	0.035	0.02	a,d	-0.02	-0.02		0.033	0.033	d d	-0.02	-0.02	
Terbuthylazine	μg/L	0.02/0.05			0.035							u d			
PCBs	μg/L	0.02/0.03	MDL / RL	0.1	0.033	a,d	0.035	-0.02	a,b,d	0.178	0.187	u	-0.02	-0.02	b,d
none exceeding MDL or RL	-														
PAHs none exceeding MDL or RL															
mone exceeding MDL of RL	-														

Abbreviations: MDL - method detection level

RL - reporting level

μg/L - micrograms per liter

Notes: a. Calculated value 1/2 distance between MDL and RL

b. Less than MDL

c. Holding time violation occurred, flagged by QAO d. First sample is a blind duplicate. Data averaged together before used in calculations

Table 3-11.2 Toxicity Results Station CBESC5 – Escondido Creek

	Toxicity Species									
Station	C 1 .		Selenastrum	TT1-1	1					
CBESC5	Cerioda	phnia dubia	capricornutum	Hyalei	la azteca					
Sample Type:		grab	grab	inte	grated					
Matrix:	water		water	sed	liment					
Method	EPA 1994 (EPA 600/4-91/002)		EPA 1994 (EPA 600/4-91/002)	EPA 2000 (EF	PA 600R-99/064)					
Eval Threshold		80%	80%	8	30%					
Stat Method		red T-test	Paired T-test		ed T-test					
Toxic Test Dur	7 days	7 days	4 days	10 days	10 days					
Toxic End Point	Survival (%)	Young/ female (#)	Total Cell Count	Growth (weight)	Survival (%)					
Unit	%	Num/Rep	cells/ml	mg/ind	%					
Rep Count	10	10	4	8	8					
3/12/2002										
Mean	100	33	5098000	0.131	71					
Std Dev	0	9	66/433	0.034	18.1					
Probability	0.084	0	0	0.023	0.025					
Pct Control	125	104	83.1	143	81.4					
Tox Sig Effect Code	NSG	SG	SG	SG	SG					
4/23/2002		J								
Mean	30	24	5938000	0.148	81					
Std Dev	48.3	15	366788	0.05	17.3					
Probability	0.001	0.316	0.057	0.001	0.046					
Pct Control	30	82.7	91.8	63.7	86.7					
Tox Sig Effect Code	SL	NSG	NSG	SL	SG					
6/4/2002										
Mean	100	22	4818000	0.23	91					
Std Dev	0	8	268080	0.025	17.3					
Probability	0.084	0.278	0.371	0	0.362					
Pct Control	125	111	98.5	159	97.3					
Tox Sig Effect Code	NSG	NSG	NSG	SG	NSG					
9/17/2002										
Mean	90	22	8593000	0.229 0.22	84 79					
Std Dev	31.6	5	877477	0.052 0.027	13 18.5					
Probability	0.5	0.408	0.062	0.034 0.159	0.256 0.407					
Pct Control	100	97.4	116	82.2 106	107 103					
Tox Sig Effect Code	NSG	NSG	NSG	SG NSG	NSG NSG					

SL - Significant compared to negative control based on statistical test, alpha of less than 5%, AND less than the evaluation threshold (Both criteria met)

NG - Significant compared to negative control based on statistical test, alpha less than 5%, BUT is greater than the evaluation threshold (Only the first criteria met)

NSL - Not significant compared to negative control based on statistical test, alpha less than 5%, but was less than the evaluation threshold (Second criteria met)

NSG - Not significant compared to negative control based on statistical test, alpha of 5%, and is above the evaluation threshold (No criteria met)

Station 904CBESC8 is located in HA 904.61, downstream side of the La Bajada - Rancho Santa Fe bridge in the community of Rancho Santa Fe. (GPS 33.03393N 117.23565W) The pH of 11.6 recorded on September 17th was the highest of all sampling events in the Carlsbad HU.

Water Chemistry (Table 3-12.1)

Water quality objectives for total nitrogen, total phosphorus, and sulfate were exceeded in all samples. Total phosphorus was exceeded in half the samples, but the average for all samples was slightly below the objective.

Diazinon was detected in all samples with lal the samples quantifiable, with the April sample exceeding both CDFG chipnical adult criteria. Secbumeton and terbuthylazine were detected at quantifiable levels in March and June and terbuthylazine in June, but at levels between the MDL and RL. Dimethoate, dioxathion, chlordene (gamma), dacthal, DDD(p,p'), DDE(p,p'), DDT(p,p'), endosulfan II, atrazine, prometon and propazine were all detected a single time

Toxicity (Table 3-12.2)

Water samples did not, but sediment did show a persistence of toxicity. Six of the 12 test results on water samples were significant compared to negative control based on statistical test, alpha of less than 5%, but none were less than the evaluation threshold. The results of the April and September sediment samples were significant compared to negative control based on statistical test, alpha of less than 5%, and less than the evaluation threshold (Code SL) in testing on Hyalella (growth). The September sample was also SL for Hydlella (survival).

Table 3-12.1 Monitoring Results Station CBESC8 – Escondido Creek

STATION 904CESC8				SampleDate							
		Threshold	Source	03/13/0	02	04/24/		06/04/	02	09/17/0)2
Analyte	Units	Value		Values N		Values N	Votes	Values I		Values N	
General/Physical											
pH	units	6.5 - 8.5	BP			7.68		7.97		11.62	
Specif. Conduct.	mS/cm			2.162		2.36		2.28		2.013	
Temp.	°C			15.38		15.21		18.01		18.88	
Turbidity	ntu	20	BP			6.6		6.4		9.42	
Velocity	fps	-		0.876		0.788		0.59		1.47	
Sat.Oxygen	%			80.1		67.8		84.1		102.5	
Inorganics											
Alkalinity as CaCO3	mg/L	20000	EPA	276		285		252		248	
Ammonia as N	mg/L	7.97	EPA	0.07	а	0.07	а	0.07	а	0.075	
Nitrate + Nitrite as N	mg/L	1	BP	2.5		2.85		1		1.5	
Nitrogen, Total Kjeldahl	mg/L	1	BP	0.37	а	0.56		0.5		0.38	
OrthoPhosphate as P	mg/L	<u>-</u>		0.126		0.128		0.096		0.088	
Phosphorus, Total as P	mg/L	0.1	BP	0.15		0.16		0.13		0.12	
Sulfate	mg/L	250	BP	332		507		454		438	
Dissolved Metals	g/ =									.00	
Aluminum	μg/L	1000/200	MCL	5004		3.90		1		32.88	
Arsenic	μg/L	50	MC	7. 9		1.87		1.98		2.02	
Cadmium	μg/L	4.1/11	CTR.	6		0.048		0.017		0.065	
Chromium	μg/L	50		3.80		0.43		0.12		1.19	
Copper	μg/L	18/29	E R	2.94		3.17		2.06		2.45	
Lead	μg/L	6.2/160	CTR	-0.01	b	-0.01	b	-0.002	b	0.027	
Manganese	μg/L	50	MCL	131	~	153	~	116	~	88	
Nickel	μg/L	110/950	CTR	0.64		1.19		0.59		2.13	
Selenium	μg/L	20	CTR	5.46		5.09		1.72		5.55	
Silver	μg/L	14/17	CTR	-0.010	b	-0.01	b	-0.008	b	-0.008	b
Zinc	μg/L	240/240	CTR	3.14	-	2.29		1.39		2.75	
OP Pesticides	<u> </u>	,		U							
Diazinon	μg/L	0.02/0.05	MDL / RL	0.065		0.225		0.013		0.013	
Dimethoate	μg/L	0.03/0.05	MDL / RL	-0.03	b	0.04		-0.03	b	-0.03	b
Dioxathion	μg/L	0.03/0.05	MDL / RL	0.04		-0.03	b	-0.03	b	-0.03	b
Disulfoton	μg/L	0.01/0.05	MDL / RL	0.03		0.03		0.03		-0.01	b
OC Pesticides	F-9/ =										
Chlordene, gamma	μg/L	0.001/0.002	MDL / RL	-0.001	b	-0.001	b	-0.001	b	0.006	
Dacthal	μg/L	0.001/0.002		-0.001	b	0.001	а	-0.001	b	-0.001	b
DDD(p,p')	μg/L	0.001/0.002		0.001	а	-0.001	b	-0.001	b	-0.001	b
DDE(p,p')	μg/L	0.001/0.002		-0.001	b	0.002		-0.001	b	-0.001	b
DDT(p,p')	μg/L	0.002/0.005		-0.002	b	-0.002	b	0.003	а	-0.002	b
Endosulfan II	μg/L	0.001/0.002		-0.001	b	-0.001	b	-0.001	b	0.00375	а
Oxadiazon	μg/L	0.001/0.002		0.018		0.013		0.011		-0.001	b
Trianzine Herbicides	r-3r =							-			
Atrazine	μg/L	0.02/0.05	MDL / RL	0.035	а	-0.02	b	-0.02	b	-0.02	b
Prometon	μg/L	0.02/0.05	MDL / RL	-0.02	b	-0.02	b	-0.02	b	0.022	
Propazine	μg/L	0.02/0.05	MDL / RL	-0.02	b	-0.02	b	0.035	а	-0.02	b
Secbumeton	μg/L	0.02/0.05	MDL / RL	0.12		-0.02	b	0.14		-0.02	b
Terbuthylazine	μg/L	0.02/0.05	MDL / RL	0.15		0.035		0.15		-0.02	b
PCBs	, 0			-				-			
none exceeding MDL or RL											
PAHs											
none exceeding MDL or RL											

Abbreviations: MDL - method detection level

RL - reporting level

μg/L - micrograms per liter

Notes: a. Calculated value 1/2 distance between MDL and RL

- b. Less than MDL
 c. Holding time violation occurred, flagged by QAO
- d. First sample is a blind duplicate. Data averaged together before used in calculations

Table 3-12.2 Toxicity Results Station CBESC8 – Escondido Creek

			Toxicity Speci	ies					
Station	G : 1		Selenastrum	77 1	11 4				
CBESC8	Cerioda	phnia dubia	capricornutum	Hyalella azteca					
Sample Type:		grab	grab		egrated				
Matrix:		water	water	sec	liment				
Method	EPA 1994 (EPA 600/4-91/002)		EPA 1994 (EPA 600/4-91/002)	EPA 2000 (E	PA 600R-99/064)				
Eval Threshold		80%	80%		30%				
Stat Method		red T-test	Paired T-test		ed T-test				
Toxic Test Dur	7 days	7 days	4 days	10 days	10 days				
Toxic End Point	Survival (%)	Young/ female (#)	Total Cell Count	Growth (weight)	Survival (%)				
Unit	%	Num/Rep	cells/ml	mg/ind	%				
Rep Count	10	10	4	8	8				
3/12/2002									
Mean	100	33	5378000	0.221	90				
Std Dev	0	11	198 97	0.043	7.56				
Probability	0.084	0.001	0.0	0	0.295				
Pct Control	125	196	877	240	103				
Tox Sig Effect Code	NSG	G	3G	SG	NSG				
4/23/2002		1/1							
Mean	80	20	5623000	0.15	81				
Std Dev	42.2	4	408371	0.062	16.4				
Probability	0.084	0.322	0.015	0.004	0.04				
Pct Control	80	104	86.9	64.3	86.7				
Tox Sig Effect Code	NSG	NSG	SG	SL	SG				
6/4/2002									
Mean	100	29	4148000	0.252	78				
Std Dev	0	8	316228	0.128	32.8				
Probability	0.084	0.013	0.009	0.025	0.107				
Pct Control	125	145	84.8	174	82.7				
Tox Sig Effect Code	NSG	SG	SG	SG	NSG				
9/17/2002									
Mean	90	18	7553000	0.186 0.264	44 90				
Std Dev	31.6	8	797392	0.046 0.033	15.1 16.9				
Probability	0.172	0.312	0.046	0.001 0.001	0 0.062				
Pct Control	90	110	115	66.9 127	55.7 116				
Tox Sig Effect Code	NSG	NSG	SG	SL SG	SL NSG				

SL - Significant compared to negative control based on statistical test, alpha of less than 5%, AND less than the evaluation threshold (Both criteria met)

NG - Significant compared to negative control based on statistical test, alpha less than 5%, BUT is greater than the evaluation threshold (Only the first criteria met)

NSL - Not significant compared to negative control based on statistical test, alpha less than 5%, but was less than the evaluation threshold (Second criteria met)

NSG - Not significant compared to negative control based on statistical test, alpha of 5%, and is above the evaluation threshold (No criteria met)

3.4.7 Loma Alta Creek

Station No. 904CBLAC3 is located in HA 904.10 just upstream of El Camino Real in the City of Oceanside. (GPS 33.19993N 117.33008W) The pH water quality objective was exceeded in September.

Water Chemistry (Table 3-13.1)

This was the only station in the watershed where concentrations of total nitrogen, total phosphorus and sulfate in all samples were below water quality objectives. Azinphos methyl, carbophenothion, demeton-s, mevinphos, naled(Dibrom) were all detected on March 12, but at levels between the MDL and RL. Diazinon was detected in March and June, with the March sample exceeding CDFG chronic criterion of 0.05 ug/L. Disulfoton exceeded the RL in March and the MDL in June. Atrazine was detected and quantifiable in March, June and September. DDE(p,p') was above the MDL, F. dos Ifan I, Endrin Aldehyde, HCH alpha, HCH beta, HCH delta and HCH gammabe ween the RL and MDL in April. Oxadiazon was above the MDL in April and I use Prometron was detected above the RL in June and September and between the RL and MDL in April. Propazine was detected between the RL and MDL in June and secondment exceeded the RL in March and was between the MDL and RL in April Terbuthylazine exceeded the RL in March.

Toxicity (Table 3-13.2)

Water samples showed persistence of toxicity. The results for three of the four water samples were significant compared to negative control based on statistical test, alpha of less than 5%, and less than the evaluation threshold (Code SL) in testing on ceriodaphnia (young/female) and four of four sample for selenastrum. The September sediment sample was SL for Hyalella (survival).

Table 3-13.1 Monitoring Results Station CBLAC – Loma Alta Creek

STATION 904CBLAC5		Thursday		SampleDate								
		Threshold	Source	03/12/	02	04/22/			6/03/02		09/16/	02
Analyte	Units	Value		Values 1	Notes	Values	Notes	Values	Values	Notes	Values I	Notes
General/Physical												
рН	units	6.5 - 8.5	BP	7.89		8		7.51			9.97	
Specif. Conduct.	mS/cm			3.973		4.351		4.631			4.705	
Temp.	°C			15.87		19.78		21.79			23.16	
Turbidity	ntu	20	BP	0.87		0.8		1			2.1	
Velocity	fps			0.518		0		0			0	
Sat.Oxygen	%			98.1		168.7		153.2			154.3	
Inorganics												
Alkalinity as CaCO3	mg/L	20000	EPA	310		298		329			298	
Ammonia as N	mg/L	7.97	EPA	0.07	а	0.38		0.07		а	0.11	
Nitrate + Nitrite as N	mg/L	1	BP	0.086	е	0.176		0.146		е	0.109	е
Nitrogen, Total Kjeldahl	mg/L	11	BP	0.37	а	0.5		0.37		а	0.47	
OrthoPhosphate as P	mg/L			0.032		0.05		0.034			0.019	
Phosphorus, Total as P	mg/L	0.1	BP	0.04	a	2.04	а	0.04		а	-0.03	b
Sulfate	mg/L	250	BP	191		250		240			204	
Dissolved Metals	n	1000/000	MOL					0.07	4.00		0.1	I.
Aluminum	μg/L	1000/200	MCL MCI	$\frac{1}{4}\frac{A}{4}$		5.87		0.67	1.28	d	-0.1	b
Arsenic	μg/L	50			acksquare	5.63	-	12.7	6.33	d	4.85	
Cadmium	μg/L	4.1/11	CT	1.0 <u>2</u> 3	•	-0.01	b	0.0156	0.274	d	0.0177	
Chromium	μg/L	50	MC. CT.			0.396		0.498	1.19	d	0.423	
Copper	μg/L	18/29 6.2/160		1.68	L .	2.58	-	1.94	3.36	d	2.27	
Lead	μg/L	50	MCL	-0.01	b	-0.01	b	0.0146	2.41	d	0.0074	
Manganese Nickel	μg/L μg/L	110/950	CTR	123 0.67		64.1 1.99		157 3.51	84.6 4.43	d d	208 3.14	
Selenium	μg/L μg/L	20	CTR	10		1.99		14.8	12.7	d	12.3	
Silver	μg/L μg/L	14/17	CTR	-0.01	b	-0.01	b	0.234	-0.008	b.d	-0.008	b
Zinc	μg/L μg/L	240/240	CTR	1.86	D	-0.01	b	3.65	1.32	d d	1.58	D
OP Pesticides	μу/∟	240/240	OTIL	1.00		-0.01	U	3.03	1.02	u	1.50	
Azinphos methyl	μg/L	0.03/0.05	MDL / RL	0.04	а	-0.03	b,c	-0.03		b	-0.03	b
Carbophenothion	μg/L μg/L	0.03/0.05	MDL / RL	0.04	a	-0.03	b,c	-0.03		b	-0.03	b
Demeton-s	μg/L μg/L	0.04/0.05	MDL / RL	0.04	a	-0.04	b,c	-0.04		b	-0.04	b
Diazinon	μg/L	0.02/0.05	MDL / RL	0.062	u	0.045	C	0.024		-	-0.005	b
Disulfoton	μg/L	0.01/0.05	MDL / RL	0.138		0.125	C	0.03		а	-0.01	b
Mevinphos	μg/L	0.03/0.05	MDL / RL	0.04	a	-0.03	b,c	-0.03		b	-0.03	b
Naled(Dibrom)	μg/L	0.03/0.05	MDL / RL	0.04	a	-0.03	b,c	-0.03		b	-0.03	b
OC Pesticides	F-9: —						-,-					-
DDE(p,p')	μg/L	0.001/0.002	MDL / RL	-0.001	b	0.005		-0.001		b	-0.001	b
Endosulfan I	μg/L	0.001/0.002	MDL / RL	-0.001	b	0.001	а	-0.001		b	-0.001	b
Endrin Aldehyde	μg/L	0.002/0.005	MDL / RL	-0.002	b	0.003	а	-0.002		b	-0.002	b
HCH, alpha	μg/L	0.001/0.002	MDL / RL	-0.001	b	0.001	а	-0.001		b	-0.001	b
HCH, beta	μg/L	0.001/0.002	MDL / RL	-0.001	b	0.001	а	-0.001		b	-0.001	b
HCH, delta	μg/L	0.001/0.002	MDL / RL	-0.001	b	0.001	а	-0.001		b	-0.001	b
HCH, gamma	μg/L	0.001/0.002	MDL / RL	-0.001	b	0.001	а	-0.001		b	-0.001	b
Oxadiazon	μg/L	0.001/0.002	MDL / RL	-0.001	b	0.006		0.01		b	-0.001	b
Trianzine Herbicides												
Atrazine	μg/L	0.02/0.05	MDL / RL	0.1		-0.02	b	-0.02		b	-0.02	b
Prometon	μg/L	0.02/0.05	MDL / RL	-0.02	q	0.035	а	0.112			0.045	
Propazine	μg/L	0.02/0.05	MDL / RL	-0.02	b	-0.02	b	0.035		а	-0.02	b
Secbumeton	μg/L	0.02/0.05	MDL / RL	0.43		0.035	а	-0.02		b	-0.02	b
Terbuthylazine	μg/L	0.02/0.05	MDL / RL	0.61		-0.02	b	-0.02		b	-0.02	b
PCBs												
none exceeding MDL or RL												
PAHs												
none exceeding MDL or RL												
								İ				

Abbreviations: MDL - method detection level

RL - reporting level μg/L - micrograms per liter

Notes: a. Calculated value 1/2 distance between MDL and RL

b. Less than MDL

c. Holding time violation occurred, flagged by QAO
d. First sample is a blind duplicate. Data averaged together before used in calculations
e. Laboratory Contamination

Table 3-13.2 Toxicity Results Station CBLAC2 – Loma Alta Creek

	Toxicity Species									
Station	G . 1		Selenastrum	** 1						
CBLAC3	Cerioda	phnia dubia	capricornutum	Hyalella azteca						
Sample Type:		grab	grab	integrated						
Matrix:		water	water	sec	liment					
Method	EPA 1994 (I	EPA 600/4-91/002)	EPA 1994 (EPA 600/4-91/002)	EPA 2000 (E	PA 600R-99/064)					
Eval Threshold		80%	80%		80%					
Stat Method		red T-test	Paired T-test		ed T-test					
Toxic Test Dur	7 days	7 days	4 days	10 days	10 days					
Toxic End Point	Survival (%)	Young/ female (#)	Total Cell Count	Growth (weight)	Survival (%)					
Unit	%	Num/Rep	cells/ml	mg/ind	%					
Rep Count	10	10	4	8	8					
3/12/2002			_							
Mean	80	14	1128000	0.263	90					
Std Dev	42.2	6	78316	0.038	9.26					
Probability	0.278	0.004	$\mathbf{A} \wedge \mathbf{P} \perp$	0	0.309					
Pct Control	88.9	61.7	238	286	103					
Tox Sig Effect Code	NSG	L	SL	SG	NSG					
4/23/2002		ノ								
Mean	80	8	1218000	0.194	86					
Std Dev	42.2	4	129099	0.038	17.7					
Probability	0.084	0	0.001	0.031	0.148					
Pct Control	80	37	23.8	83.3	92					
Tox Sig Effect Code	NSG	SL	SL	SG	NSG					
6/4/2002										
Mean	50	8	938000	0.251	99					
Std Dev	52.7	3	108934	0.037	3.54					
Probability	0.089	0.001	0	0	0.092					
Pct Control	62.5	38.2	19.2	174	105					
Tox Sig Effect Code	NSL	SL	SL	SG	NSG					
9/17/2002										
Mean	100	22	743000	0.285 0.229	55 48					
Std Dev	0	4	210000	0.098 0.096	27.7 26.6					
Probability	0.5	0.012	0	0.439 0.273	0.032 0.009					
Pct Control	100	137	11.3	102 111	70 61.4					
Tox Sig Effect	NSG	SG	SL	NSG NSG	SL SL					
Code	1100	50	OL.	1,50 1,50	SE SE					

SL - Significant compared to negative control based on statistical test, alpha of less than 5%, AND less than the evaluation threshold (Both criteria met)

NG - Significant compared to negative control based on statistical test, alpha less than 5%, BUT is greater than the evaluation threshold (Only the first criteria met)

NSL - Not significant compared to negative control based on statistical test, alpha less than 5%, but was less than the evaluation threshold (Second criteria met)

NSG - Not significant compared to negative control based on statistical test, alpha of 5%, and is above the evaluation threshold (No criteria met)

3.4.8 San Marcos Creek

Station No. 904CBSAM3 is located in HA 904.52 on the downstream side of Discovery Street bridge in the City of San Marcos, just upstream of Lake San Marcos. (GPS 33.13027N 117.19200W)

Water Chemistry (Table 3-14.1)

Two of the four samples exceeded the water quality objectives for total nitrogen, but the average and median values were below the objective. All samples exceeded the total phosphorus objective and three of four samples exceeded the sulfate objective. This location had the second highest average concentration of selenium at 16.69 ug/L with a peak concentration of 39.7 ug/L occurring on March 12, 2002.

This location had the second highest total of detections of pesticides/herbicides in the Carlsbad HU. Carbophenothion, demeton-s, ficr tephes, mevinphos, and naled (Dibrom) were detected in the March 12 sample and a anion (methyl) and dacthal in the April 23 sample between the MDL and RL placener was detected in three samples at levels exceeding the CDFG chronic criterion of 0.05 ug/L, with two of the samples exceeding the acute criterion of 0.08 ug/L. Disu soon exceeded the RL in two of the samples. DDD(o,p') was detected in one sample and DDE(p,p') in three samples. DDT(p,p') and Endrin were detected in the April sample between the MDL and RL. oxadiazon, atrazine, secbumeton, terbuthylazine were persistently exceeded. Oxadiazon exceeded the RL in three of the four samples. Atrazine detected above the RL in one sample and between the MDL and RL in another. Propazine was detected in three samples above the RL.

Toxicity: (Table 3-14.2)

Water and sediment samples showed a persistence of toxicity. The results for two of the four water samples were significant compared to negative control based on statistical test, alpha of less than 5%, and less than the evaluation threshold (Code SL) in testing on selenastrum with the April sample also SL for ceriodaphnia (survival). Three of four samples of sediment was SL for Hyalella (survival).

Table 3-14.1 Monitoring Results Station CBSAM3 – San Marcos Creek

STATION 904CBSAM3								S	ampleDa	te		
		Threshold	Source	3	3/12/02		4/23/0		6/4/0		9/18/0	2
Analyte	Units	Value	554.55	-	Values	Notes	Values I	-			Values N	
General/Physical	· · · · · · ·											
pH	units	6.5 - 8.5	BP	8.2			8.1		8.07		7.43	
Specif. Conduct.	mS/cm	0.0 0.0	ъ.	1.905			2.284		1.969		2.717	
Temp.	°C			18.05			16.5		20.02		18.74	
Turbidity	ntu	20	BP	3.7			1.7		4.9		8.72	
Velocity	fps	20	Di	1.44			0.495		0		0.72	
Sat.Oxygen	1ps %			98			92.7		96.3		94.6	
Inorganics	/0			90			32.1		90.5		34.0	
Alkalinity as CaCO3	mg/L	20000	EPA	219			241		282		241	
Ammonia as N	mg/L	7.97	EPA	0.07		а	0.27		0.07	а	0.081	
Nitrate + Nitrite as N	mg/L	1.97	BP	0.07		а	0.227		0.07	а	0.658	
Nitrogen, Total Kjeldahl	mg/L	<u>'</u> 1	BP	0.176		a	0.227	_	0.944	0	0.6	
OrthoPhosphate as P		I	БР	0.37		а	0.096	а	0.092	а	0.194	
Phosphorus, Total as P	mg/L	0.1	BP	0.175			0.090		0.092		0.194	
Sulfate	mg/L	0.1 250	BP BP	221			293		362		373	
Dissolved Metals	mg/L	250	ВР	221			293		302		3/3	
	/1	1000/000	MOL	-1 o			0.14		1.01		110	
Aluminum	μg/L	1000/200	MCL MCL	1.3	1.4	D L	2.14		1.34		14.9	
Arsenic	μg/L	50		12 5	12.4	d	2.98		13.1		3.48	
Cadmium	μg/L	4.1/11	AÎE VOI	02 ,2	_	d	0.0586		0.271		0.0829	
Chromium	μg/L	50	ИCL	1 35	1.88	d	0.437		1.25		0.514	
Copper	μg/L	18/29	CTF	3.34	3.52	d	3.33		3.41		2.99	
Lead	μg/L	6.2/160	R	-0.01	-0.01	b,d	0.0204		2.41		0.0583	
Manganese	μg/L	50	MCL	504	513	d	79.1		140		82.7	
Nickel	μg/L	110/950	CTR	1.91	1.56	d	1.33		3.65		2.87	
Selenium	μg/L	20	CTR	38.9	39.7	d	5.56		13.6		8.31	
Silver	μg/L	14/17	CTR	-0.01	0.01	b,d	-0.01	b	0.233		-0.008	b
Zinc	μg/L	240/240	CTR	6.01	6.3	d	14.7		3.78		6.75	
OP Pesticides												
Carbophenothion	μg/L	0.03/0.05	MDL / RL	0.04		а	-0.03	b	-0.03	b	-0.03	<u>b</u>
Demeton-s	μg/L	0.04/0.05	MDL / RL	0.04		a	-0.04	b	-0.04	b	-0.04	<u>b</u>
Diazinon	μg/L	0.02/0.05	MDL / RL	-0.005		b	0.375		0.25	b	0.062	b
Dicrotophos	μg/L	0.03/0.05	MDL / RL	0.04		a	-0.03	b	-0.03	b	-0.03	b
Disulfoton	μg/L	0.01/0.05	MDL / RL	-0.01		b	0.125		0.05		-0.01	b
Mevinphos	μg/L	0.03/0.05	MDL / RL	0.04		а	-0.03	b	-0.03	b	-0.03	b
Naled(Dibrom)	μg/L	0.03/0.05	MDL / RL	0.04		a	-0.03	b	-0.03	b	-0.03	b
Parathion, Methyl	μg/L	0.01/0.05	MDL / RL	-0.01		b	0.03	а	-0.01	b	-0.01	b
OC Pesticides												
Dacthal	μg/L	0.001/0.002		-0.001		b	0.001	a	-0.001	b	-0.001	b
DDD(o,p')		0.001/0.002		-0.001		b	-0.001	b	0.002		-0.001	b
DDE(p,p')	μg/L	0.001/0.002		-0.001		b	0.006		0.002		0.003	
DDT(p,p')	μg/L	0.002/0.005		-0.002		b	0.003	а	-0.002	b	-0.002	b
Endrin	μg/L	0.001/0.002		-0.001		b	0.001	а	-0.001	b	-0.001	b
Endrin Aldehyde	μg/L	0.002/0.005		-0.002		b	0.008		-0.002	b	-0.002	b
Oxadiazon	μg/L	0.001/0.002	MDL / RL	0.112			0.063		0.025		-0.001	b
Trianzine Herbicides												
Atrazine	μg/L	0.02/0.05	MDL / RL	0.13			0.035	а	-0.02	b	-0.02	b
Propazine	μg/L	0.02/0.05	MDL / RL	-0.02	b	b	-0.02	b	0.035	а	-0.02	b
Secbumeton	μg/L	0.02/0.05	MDL / RL	0.34			0.262		0.75		-0.02	b
Terbuthylazine	μg/L	0.02/0.05	MDL / RL	0.5			2.5		0.422		-0.02	b
PCBs												
none exceeding MDL or RL												
PAHs												
none exceeding MDL or RL												

Abbreviations: MDL - method detection level

RL - reporting level

Notes: a. Calculated value 1/2 distance between MDL and RL

b. Less than MDL

c. Holding time violation occurred, flagged by QAO
d. First sample is a blind duplicate. Data averaged together before used in calculations

Table 3-13.2 Toxicity Results Station CBSAM3 – San Marcos Creek

	Toxicity Species									
Station	G : 1	1 1 1	Selenastrum	TT . 1.1	1					
CBSAM3	Cerioda	phnia dubia	capricornutum	Hyaiei	Hyalella azteca					
Sample Type:		grab	grab		grated					
Matrix:		water	water	sec	liment					
Method	EPA 1994 (EPA 600/4-91/002)		EPA 1994 (EPA 600/4-91/002)	EPA 2000 (EI	PA 600R-99/064)					
Eval Threshold		80%	80%	,	80%					
Stat Method		red T-test	Paired T-test		ed T-test					
Toxic Test Dur	7 days	7 days	4 days	10 days	10 days					
Toxic End Point	Survival (%)	Young/ female (#)	Total Cell Count	Growth (weight)	Survival (%)					
Unit	%	Num/Rep	cells/ml	mg/ind	%					
Rep Count	10	10	4	8	8					
3/12/2002										
Mean	100	28	933 000	0.108	13					
Std Dev	0	5	. 81 07	0.044	15.8					
Probability	0.172	(744		0.277	0					
Pct Control	111.1	21	61.9	118	14.3					
Tox Sig Effect	NSG	$_{\rm G}$	SL	NSG	SL					
Code										
4/23/2002				0.44						
Mean	0	(1)	3438000	0.367	15					
Std Dev	0		452106	0.251	13.1					
Probability	0		0.004 67.1	0.089	0					
Pct Control	0		67.1	158	10					
Tox Sig Effect Code	SL	NA	SL	NSG	SL					
6/4/2002										
Mean	90	27	5048000	0.144	75					
Std Dev	31.6	12	854010	0.064	27.8					
Probability	0.278	0.072	0.377	0.489	0.053					
Pct Control	112.5	138	103	99.5	80					
Tox Sig Effect Code	NSG	NSG	NSG	NSG	NSG					
9/17/2002										
Mean	100	19	7458000	0.32 0.208	50 54					
Std Dev	0	6	1024695	0.105 0.044	27.4 26.7					
Probability	0.172	0.121	0.481	0.169 0.495	0.014 0.025					
Pct Control	111.1	84.9	100	115 100	63.6 69.5					
Tox Sig Effect Code	NSG	NSG	NSG	NSG NSG	SL SL					
Code										

Notes: (1) No surviving adults

SL - Significant compared to negative control based on statistical test, alpha of less than 5%, AND less than the evaluation threshold (Both criteria met)

NG - Significant compared to negative control based on statistical test, alpha less than 5%, BUT is greater than the evaluation threshold (Only the first criteria met)

NSL - Not significant compared to negative control based on statistical test, alpha less than 5%, but was less than the evaluation threshold (Second criteria met)

NSG - Not significant compared to negative control based on statistical test, alpha of 5%, and is above the evaluation threshold (No criteria met)

Station No. 904CBSAM6 is located in HA 904.51 at the El Camino Real crossing downstream of La Costa Resort & Spa, in the City of Carlsbad. (GPS 33.08791N 117.26852W) This station had the three lowest levels of saturated oxygen of all the stations in the Carlsbad HU, averaging approximately 50% for those three samples. The stream velocity was consistently less than measurable. Turbidity measured at 22 NTU and specific conductance at 28.58 on September 17th was the highest recorded of all sampling events. This station also recorded the highest temperature readings.

Water Chemistry (Table 3-15.1)

Only one sample slightly exceeded the total nitrogen water quality objective, whereas all four samples exceeded the total phosphorus and sulfate objectives. This location had the highest average concentration of selenium at 20.4 ug/L, with a peck concentration of 57.2 ug/L occurring on September 17, 2002.

Diazinon was detected above the MDL in all our samples, with one between the MDL and RL, and one above CDFG chronic crie it a q 0.05 ug/L. Dioxathion was detected in the March sample between the MDL and RL, disulfoton in the March and April samples between the MDL and RL and the June sample above the RL. DDE(p,p'), endosulfan II, endrin aldehyde, HCH, alpha, methoxychlor, and propazine were all detected in single samples. Oxadiazon was detected at quantifiable levels in three samples, atrazine in two samples but at less than quantifiable levels, secbumeton and terbuthylazine in two samples at quantifiable levels and one at less than quantifiable.

Toxicity (Table 3-15.2)

Water and sediment samples showed a persistence of toxicity. All four water samples were significant compared to negative control based on statistical test, alpha of less than 5%, and less than the evaluation threshold (Code SL) in testing on selenastrum. Two of the four samples were also SL for ceriodaphnia (young/female) with the September sample also SL for ceriodaphnia (survival). Three of four samples of sediment was SL for Hyalella (survival).

Table 3-15.1 Monitoring Results Station CBSAM6 – San Marcos Creek

STATION 904CBSAM8							Sampl	eDate			
		Threshold		3/13/02	- 1	4/23/0	- 1	6/4/02	2	9/17/0	02
Analyte	Units	Value	Source	Values Not	es	Values N	lotes	Values N	lotes		
General/Physical											
Hq	units	6.5 - 8.5	BP	7.72		7.89		7.65		7.56	
Specif. Conduct.	mS/cm			6.506		6.047		5.146		28.58	
Temp.	°C			17.19		25.06		19.08		23.4	
Turbidity	ntu	20	BP	5.3		3.5		6.97		22	
Velocity	fps			0		0.0		0		0	
Sat.Oxygen	%			53.9		134.3		56.1		40.8	
Inorganics	,,,			00.0	_			0011			
Alkalinity as CaCO3	mg/L	20000	EPA	220		234		241		205	
Ammonia as N	mg/L	7.97	EPA	0.13		0.24		0.07	а	0.11	
Nitrate + Nitrite as N	mg/L	1	BP	0.274		0.245		0.333	<u>u</u>	0.239	
Nitrogen, Total Kjeldahl	mg/L	1	BP	0.68		0.58		0.79		0.69	
OrthoPhosphate as P	mg/L	•		0.186		0.19		0.221		0.207	
Phosphorus, Total as P	mg/L	0.1	BP	0.27		0.23		0.28		0.26	
Sulfate	mg/L	250	BP	577		654		832		1700	
Dissolved Metals	mg/ =	200	ъ.	977		001		002		1700	
Aluminum	μg/L	1000/200	MCL	54		2.14		24.3		-0.1	
Arsenic	μg/L	50	MC	2 77		5.91		2.29		14	
Cadmium	μg/L	4.1/11	T B	J.1\ 6	1	-0.01		0.163		0.057	
Chromium	μg/L	50		1.95		0.44		1.89		1.58	
Copper	μg/L	18/29	ETR	4.03		3.14		4.25		8.92	
Lead	μg/L	6.2/160	CTR	0.497		-0.01		0.279		0.0112	
Manganese	μg/L	50	MCL	46.7		496		30.2		594	
Nickel	μg/L	110/950	CTR	1.37		2.55		2.12		1.97	
Selenium	μg/L	20	CTR	4.89		15.8		3.7		57.2	
Silver	μg/L	14/17	CTR	-0.01 b		-0.01	b	0.049		0.022	
Zinc	μg/L	240/240	CTR	27.9		3.69	-	15.9		7.16	
OP Pesticides						0.00				70	
Diazinon	μg/L	0.02/0.05	MDL / RL	0.054		0.037		0.037		0.013	а
Dioxathion	μg/L	0.03/0.05	MDL / RL	0.04 a		-0.03	b	-0.03	b	-0.03	b
Disulfoton	μg/L	0.01/0.05	MDL / RL	0.03 a	_	0.03	a	0.073		-0.01	b
OC Pesticides		0.0.70.00									~
DDE(p,p')	μg/L	0.001/0.002	MDL / RL	-0.001 b		0.002		-0.001	b	-0.001	b
Endosulfan II	μg/L	0.001/0.002		-0.001 b		-0.001	b	-0.001	b	0.0064	
Endrin Aldehyde	μg/L	0.002/0.005		-0.002 b		0.003	а	-0.002	b	-0.002	b
HCH, alpha	μg/L	0.001/0.002		-0.001 b		-0.001	b	-0.001	b	0.005	
Methoxychlor	μg/L	0.001/0.002		-0.001 b		-0.001	b	0.001	a	-0.001	b
Oxadiazon	μg/L	0.001/0.002		0.017		0.015		0.007		-0.001	b
Trianzine Herbicides	F-O										
Atrazine	μg/L	0.02/0.05	MDL / RL	0.035 a	\Box	0.035	а	-0.02	b	-0.02	b
Propazine	μg/L	0.02/0.05	MDL / RL	-0.02 b		-0.02	b	0.035	a	-0.02	b
Secbumeton	μg/L	0.02/0.05	MDL / RL	0.035 a	_	0.18		0.251		-0.02	b
Terbuthylazine	μg/L	0.02/0.05	MDL / RL	0.035 a	-	0.875		0.55		-0.02	b
PCBs					T						
none exceeding MDL or RL											
PAHs					\dashv						\neg
Acenaphthene	μg/L	0.02/0.05	MDL / RL	0.035 a	.	-0.02	b	-0.02	b	-0.0125	b,c
Anthracene	μg/L	0.02/0.05	MDL / RL	0.08		-0.02	b	-0.02	b	-0.0125	b,c
Fluorene	μg/L	0.02/0.05	MDL / RL	0.025		-0.02	b	-0.02	b	-0.0125	b,c
Naphthalene	μg/L	0.02/0.05	MDL / RL	0.035 a		0.035	a	-0.02	b	-0.0125	b,c
Phenanthrene	μg/L	0.02/0.05	MDL / RL	0.08	\dashv	-0.02	b	-0.02	b	-0.0125	b,c

Abbreviations: MDL - method detection level RL - reporting level μg/L - micrograms per liter

Notes: a. Calculated value 1/2 distance between MDL and RL

- b. Less than MDL
- c. A holding time violation has occurred; Surrogate Corrected value; Analyte was not detected above the reported sample quantitation limit
 - d. First sample is a blind duplicate. Data averaged together before used in calculations
 - e. Laboratory Contamination

Table 3-13.2 Toxicity Results Station CBSAM6 – San Marcos Creek

	Toxicity Species									
Station	Coriode	phnia dubia	Selenastrum		la azteca					
CBSAM6	Cerioua	ipiiiia uubia	capricornutum	·						
Sample Type:		grab	grab		grated					
Matrix:		water	water	sed	iment					
Method	EPA 1994 (EPA 600/4-91/002)		EPA 1994 (EPA 600/4-91/002)	EPA 2000 (EF	PA 600R-99/064)					
Eval Threshold		80%	80%		30%					
Stat Method		red T-test	Paired T-test		ed T-test					
Toxic Test Dur	7 days	7 days	4 days	10 days	10 days					
Toxic End Point	Survival (%)	Young/ female (#)	Total Cell Count	Growth (weight)	Survival (%)					
Unit	%	Num/Rep	cells/ml	mg/ind	%					
Rep Count	10	10	4	8	8					
3/12/2002										
Mean	(1)	(1)	2468000	0.287	76					
Std Dev			232656	0.056	17.7					
Probability				0	0.074					
Pct Control			0.	312	87.1					
Tox Sig Effect	NA	M		SG	NSG					
Code	-	- 1 /1	V							
4/23/2002		U'								
Mean	100		1768000	0.258	21					
Std Dev	0	3	291662	0.181	15.5					
Probability	0.5	0	0	0.352	0					
Pct Control	100	31.4	34.5	111	22.7					
Tox Sig Effect Code	NSG	SL	SL	NSG	SL					
6/4/2002										
Mean	90	3	1568000	0.123	26					
Std Dev	31.6	2	241661	0.06	16					
Probability	0.278	0	0	0.184	0					
Pct Control	112.5	14	32	85.3	28					
Tox Sig Effect Code	NSG	SL	SL	NSG	SL					
9/17/2002										
Mean	0	(2)	2148000	0.27 0.1	29 4					
Std Dev	0		1287996	0.119 0.141	25.3 5.18					
Probability	0		0.001	0.429 0.035	0 0					
Pct Control	0		32.8	96.8 48.2	36.6 4.85					
Tox Sig Effect Code	SL	NA	SL	NSG SL	SL SL					

NOTES: (1) Sample was never tested because it was salty, so it was tested with Strongylocentrotus purpuratus (urchins), with results showing a mean percent normal pluteus stage of 99%, a std dev of 1.3, a probability of 0.058, a pct control of 105, and a tox sig effect code of NSG. (2) No surviving adults

- **SL** Significant compared to negative control based on statistical test, alpha of less than 5%, AND less than the evaluation threshold (Both criteria met)
- **NG** Significant compared to negative control based on statistical test, alpha less than 5%, BUT is greater than the evaluation threshold (Only the first criteria met)
- **NSL** Not significant compared to negative control based on statistical test, alpha less than 5%, but was less than the evaluation threshold (Second criteria met)
- **NSG** Not significant compared to negative control based on statistical test, alpha of 5%, and is above the evaluation threshold (No criteria met)

4.0 OTHER MONITORING

4.1 MUNICIPAL STORM WATER PERMIT FOR THE SAN DIEGO COUNTY

As discussed in Section 2.4, the San Diego MS4 Permittees conduct water quality monitoring within the Carlsbad HU. The following is a summary of the Fiscal Year 2003-2004 results.

MS4 Mass Loading Monitoring Program Results

There are two monitoring stations, one on Agua Hedionda Creek under the El Camino Real crossing near SWAMP station 904CBAQH6, and the other on Escondido Creek, east of Rancho Santa Fe Road, under the El Camino Del Norte Bridge upstream of SWAMP station 904CBESC8. Where appropriate, and when additional SWAMP resources are available, quantitative water quality data from copermittee monitoring will be integrated with the SWAMP data to allow for a more comprehensive assessment of water quality within the Carlsbad HU. The *San Diego County Municipal Covernittees* 2003-2004 Urban Runoff Monitoring Final Report (MEC; January 2001) takes the following regarding the mass loading monitoring program.

Agua Hedionda

Three storms were monitored in the 2003-2004 season, one each in November, January, and February. The results are included with previous measurements dating back to 1998 in Table 6-3. Common previous exceedances in fecal coliform, total dissolved solids, total suspended solids, turbidity, and diazinon continued to appear during this monitoring season. However, diazinon exceeded the water quality objective only once this season compared to six out of six exceedances over the previous two seasons. Constituent exceedances new to this watershed included biological oxygen demand (1 exceedance), chemical oxygen demand (2), and total phosphorus (1). No metals exceeded the water quality objectives.

The February 19th, 2004 sample from Agua Hedionda Creek showed toxicity to *Hyalella*. The NOEC for 96-hour survival was 50% of the test sample with a TUa of 0.69. No toxicity was expressed in the other two storm events from Agua Hedionda Creek to *Hyalella*. No toxicity to *Ceriodaphnia* or *Selenastrum* was observed in any of the Agua Hedionda Creek samples collected.

Escondido Creek

Three storms were monitored in the 2003-2004 season, one each in November, February, and March. The results are included with previous measurements dating back to 1998 in Table 6-4. Common previous exceedances in fecal coliform, total dissolved solids, turbidity, continued to appear during this monitoring season. The February storm brought constituent exceedances new to this watershed that included biological oxygen demand (1) and chemical oxygen demand (1). Nutrients appear to have the highest concentrations during the February storm. No metals exceeded the water quality objectives.

Samples from Escondido Creek did not cause toxicity to any of the three test species for all of the storm events monitored during 2003-04.

MS4 Ambient Bay and Lagoon Monitoring Program Results

Buena Vista Lagoon, Agua Hedionda Lagoon, Batisquitos Lagoon, and San Elijo Lagoon were monitored as part of the ABLM Program in 2003. The following is a summary of the data as presented in the MEC report.

Buena Vista Lagoon

Sediments in Buena Vista Lagoon were monitored as part of the 2003 ABLM Program to assess the potential for adverse effects from the watershed and to compare sediment quality with other coastal embayments in San Diego County. In Phase I, a stratified random approach was used to identify the three sites where SOCs were most likely to be found (i.e., those with the highest TOC and smallest grain size). Si e 1R-1 in the outer stratum, 2R-1 in the middle stratum, and 3R-1 in the inn it stratum. These sites were sampled in Phase II of the assessment and analyzed for stding an chamitry, toxicity, and benthic community structure. The results of the chemistry assessment indicated that six of the nine metals analyzed were found in the Lagor sediments. Concentrations were slightly higher than those found in other embayments, but were low compared to ERL and ERM values. Concentrations of all the metals were below their respective ERLs except copper, which was slightly higher than the ERL, but did not exceed the ERM. The mean ERM-Q for Buena Vista Lagoon was the third highest among the embayments assessed in the ABLM Program. The percent survival of test organisms exposed to the Lagoon sediments was significantly less than that of a Control, which suggests the presence of toxic agents. However, the low concentrations of the constituents monitored suggests that they did not account for the elevated toxicity. Only three taxa were found in Buena Vista Lagoon, all of which were freshwater animals. The low relative rankings are likely due to the influence of fresh water and lack of tidal flushing in the Lagoon rather than a greater than average contaminant loading. The relative ranks were developed from data collected in the summer of 2003 and presented for the first time in the 2004 report. However, attributing contaminants in the embayments directly to COCs in the watershed is premature at this time, particularly since samples for sediment chemistry and toxicity were based on a single composite for each embayment. Monitoring conducted in the future may help determine potential contaminant sources through the use of a longer-term data set.

Agua Hedionda Lagoon

Sediments in Agua Hedionda Lagoon were monitored as part of the 2003 ABLM Program to assess the potential for adverse effects from the watershed and to compare sediment quality with other coastal embayments in San Diego County. In Phase I, a stratified random approach was used to identify the three sites where COCs were most likely to be found (i.e., those with the highest TOC and smallest grains size): Site 2M-1 in the middle stratum, and 3M-1 and 3L-1 in the inner stratum. These sites were sampled in Phase II of the assessment

and analyzed for sediment chemistry, toxicity, and benthic community structure. The results of the chemistry assessment indicated that six metals found in all the embayments assessed were also found in Agua Hedionda Lagoon at concentrations above the detection limit. Concentrations were slightly higher than those found in other embayments, but only arsenic and copper exceeded their respective ERLs. The mean ERM-Q for Agua Hedionda Lagoon exceeded the threshold value of 0.10 but concentrations of all metals were low, at least three times less than their respective ERMs. Toxicity associated with the sediments was significantly different from that of the Control, suggesting that toxic constituents were present in the Lagoon. Benthic community indices suggested that the biotic community in the Lagoon sediments was fair compared to other embayments in San Diego County. The infaunal community was dominated by the sea slug Acteocina inculta, which accounted for 55.5% of the taxa collected, horseshoe worms, and polychaete worms. The relative ranks for Agua Hedionda Lagoon compared to the other embayments in the ABLM Program were 5 for chemistry, 4 for toxicity, and 9 for benthic community structure. The relative ranks were developed from data collected in the summer of 2003 and presented for the first time in the 2004 report. However, attributing contaminants in the enbayments directly to COCs in the watershed is remature at this time, particularly time can ples for sediment chemistry and toxicity were based on a single composite or each embayment. Monitoring conducted in the future may help determine potential containing and sources through the use of a longer-term data set data set.

Batiquitos Lagoon

Sediments in Batiquitos Lagoon were monitored as part of the 2003 ABLM Program to assess the potential for adverse effects from the watershed and to compare sediment quality with other coastal embayments in San Diego County. In Phase I, a stratified random approach was used to identify the three sites where COCs were most likely to be found (i.e., those with the highest TOC and smallest grains size). All three sites (3L-2, 3M-5, and 3R-2) were located in the inner stratum of the Lagoon. These sites were sampled in Phase II of the assessment and analyzed for sediment chemistry, toxicity, and benthic community structure. The results of the chemistry assessment indicated that six metals common to all of the embayments assessed were also found in Batiquitos Lagoon. Concentrations were low compared to published values, but arsenic and copper exceeded their respective ERLs. The mean ERMQ for Batiquitos Lagoon, based on these constituents was 0.152, which was intermediate among the other coastal embayments assessed. This value exceeded the threshold of 0.10, which may indicate an increased probability of producing adverse biological effects. However, concentrations of all metals were low four to 12 times less than their respective ERMs. The percent survival of test organisms exposed to sediments from Batiquitos Lagoon was significantly less than that of the control, suggesting the presence of toxic elements in the Lagoon. However, analyses of benthic community indices suggested that the biotic community in Batiquitos Lagoon was good compared to the other embayments. Three taxa dominated the infaunal community in Batiquitos Lagoon: the barley snail Barleeia sp, the herbivorous amphipod Ampithoe longimana, and the sea slug Acteocina inculta. For Batiquitos Lagoon, the relative ranks were 6 for chemistry, 2 for toxicity, and 10 for benthic community structure. The relative ranks were developed from data collected in the summer of 2003 and presented for the first time in the 2004 report. However, attributing

contaminants in the embayments directly to COCs in the watershed is premature at this time, particularly since samples for sediment chemistry and toxicity were based on a single composite for each embayment. Monitoring conducted in the future may help determine potential contaminant sources through the use of a longer-term data set.

San Elijo Lagoon

Sediments in San Elijo Lagoon were monitored as part of the 2003 ABLM Program to assess the potential for adverse effects from the watershed and to compare sediment quality with other coastal embayments in San Diego County. In Phase I, a stratified random approach was used to identify the three sites where COCs were most likely to be found (i.e., those with the highest TOC and smallest grains size): Site 2M-1 in the middle stratum, and 3L-4 and 3R-4 in the inner stratum. These sites were sampled in Phase II of the assessment and analyzed for sediment chemistry, toxicity, and benthic community structure. The results of the chemistry assessment indicated that all of the nine metals assessed were found in the Lagoon sediments, but none exceeded its respective ERL value. The pean LRM-Q for San Elijo Lagoon was 0.116, which exceeded the published threshold value of 0.10 and suggests the potential for increased toxicity. Percent survival of test organisms exposed to San Elijo Lagoon sediments was significantly different from that of the control, suggesting the presence of toxic agents. Benthic community indices suggested that the biotic community in the Lagoon sediments ranked low compared to other em ments in San Diego County. This was primarily due to the lack of organisms found at Site 3R-4, which is located in the inner-most part of the Lagoon and receives minimal tidal flushing. The infaunal community was dominated by a genus of barley snail and polychaete worms. For San Elijo Lagoon, the relative ranks were 7 for chemistry, 3 for toxicity, and 4 for benthic community structure. The relative ranks were developed from data collected in the summer of 2003 and presented for the first time in the 2004 report. However, attributing contaminants in the embayments directly to COCs in the watershed is premature at this time, articularly since samples for sediment chemistry and toxicity were based on a single composite for each embayment.

MS4 Rapid Stream Bioassessments Results

The MEC report states that the Carlsbad WMA included four bioassessment monitoring sites, two on Agua Hedionda Creek and two on Escondido Creek. Index of Biotic Integrity scores rated the benthic communities Very Poor at all four sites. The Elfin Forest site in Escondido Creek, with excellent physical habitat conditions, was at the upper limit of the Very Poor range and an impairment sensitive caddisfly was collected there. This likely indicates some measure of water quality improvement occurred between Harmony Grove Bridge and Elfin Forest. The Agua Hedionda Creek sites both had marginal in-stream habitat conditions, which may have limited macroinvertebrate colonization.

4.2 RWQCB 1998-2001 Ambient Bioassessment Monitoring Program

Benthic community data collected at 14 sites in the Carlsbad Watershed in the course of the RWQCB Ambient Bioassessment Monitoring Program between 1998 and 2001 provided preliminary indications of significant impact to the benthic macroinvertebrate communities in

Loma Alta Creek, Buena Vista Creek, San Marcos Creek, Escondido Creek, Agua Hedionda Creek, and Encinitas Creek. Almost all of the sites in the Carlsbad Watershed had well below average ranking scores. The Index of Biotic Integrity scores ranged from Very Poor (0-12; lowest score = 5) to Good (38-54, highest score =45) with the maximum possible score being 70. None of the stations sampled in the Carlsbad watershed represented reference conditions or approached Very Good.

TABLE 4-1
Benthic macroinvertebrate sampling site information for sampling events between May 1998 and May 2001 in the Carlsbad HU with San Diego IBI Score

LOCATION DESCRIPTION	SITE ID	LATITUDE/ LONGITUDE	Site No.	May 1998	Sept 1998	Nov 1998	May 1999	Nov 1999	May 2000	Nov 2000	May 2001	San Diego IBI Score
Loma Alta Creek: Reach consisted of 5 riffles downstream of College Blvd.	LAC- CB	N33° 12' 18.0" W117° 17' 13.4"	38	x	X	X	X	X	-	-	-	Poor to Fair
Loma Alta Creek: Reach consisted of 5 riffles downstream of El Camino Real	LAC- ECR	N33 [°] 11' 57.6" W117 [°] 19' 48.2"	39	x	x	X	x	-	x	x	-	Poor
Buena Vista Creek: Reach consisted of 5 riffles downstream of Santa Fe Avenue	BVR- ED	N33° 11' 57.9" W117° 14' 35.1"	40	Х	x	X	x	x	-	-	•	Fair
Buena Vista Creek: Reach consisted of 5 riffles upstream of South Vista Way	BVR- SVW	N33° 10' 48 7"	41	x	X	X	X	X	X	X	1	Very Poor to Poor
Agua Hedionda Creek: Reach consisted of 5 riffles downstream of Sycamore Avenue	AriC SA	33° 59'\25" W\1' 31' 34.0"	42	x	x	-	-	-	-	-	-	
Agua Hedionda Creek: Reach consisted of 5 riffles downstream of El Camino Real	ECR	N33° 08' 57.0" W117° 17' 46.9"	43	x	x	X	X	x	x	X	X	Poor to Good
San Marcos Creek: Reach consisted of 5 riffles 50 m upstream of Mc Mahr Road intersection	SMC- M	N33° 07' 47.8" W117° 11' 29.0"	44	x	x	X	x	x	х	X	-	Poor to Fair
San Marcos Creek: Reach consisted of 5 riffles downstream of Santar Place	SMC- SP	N33° 08' 37.0" W117° 08' 54.2"	45	x	x	X	x	x	-	-	-	Poor
San Marcos Creek: Reach consisted of 5 riffles 50 m upstream of Mc Mahr Road intersection	SMC- RSFR	N33° 06' 12.9" W117° 13' 33.6"	46	x	x	X	x	x	-	X	-	Poor to Fair
San Marcos Creek: Reach consisted of 5 riffles downstream of Rancho Santa Fe Road	SMC- LCCC	N33° 05' 18.7" W117° 14' 43.6"	47	x	x	X	x	x	x	X	-	Fair
Encinitas Creek: Reach consisted of 5 riffles downstream of Green Valley Rd	ENC- GVR	N33° 04' 17.5" W117° 15' 43.8"	48	x	x	X	x	X	x	-	-	Poor
Encinitas Creek: Reach consisted of minimal riffle habitat, large pool was sampled using lentic procedures in May 2000	ENC- RSFR	N33° 04′ 4.2″ W117° 14′ 42.1″	49	-	-	ı	-	-	x	-	ı	
Escondido Creek: Reach consisted of 5 riffles downstream of Harmony Grove bridge	EC- HRB	N33° 06' 31.6" W117° 06' 41.2"	51	x	x	X	x	x	-	-	-	Poor
Escondido Creek: Reach consisted of 5 riffles downstream of Elfin Forest Resort	EC-EF	N33° 04' 17.6" W117° 09' 52.0"	52	x	x	X	X	X	x	-	-	Poor
Escondido Creek: Reach consisted of 5 riffles upstream of Elfin Forest on Harmony Grove Rd.	EC-HG	N33E04' 35.2" W117E 09' 33.3"	53	-	-	-	-	-	-	X	-	
Escondido Creek: Reach consisted of 5 riffles upstream of Rancho Santa Fe Road	EC- RSFR	N33° 02' 10.2" W117° 14' 6.1"	54	x	-	-	-	-	-	-	-	

5. TRIAD APPROACH SUMMARY

The following conclusions have been made regarding the quality of the water at the sample locations using the triad approach described in above Section 3.3

Table 5-1 Data Assessment Summary

Station	Chemistry Persistent exceedance of water quality objectives?	Toxicity Evidence of toxicity?	Bioassessment Indications of benthic alteration?	Possible Conclusion Determining Action	Action
904CBAQH6	yes	yes	DRAI	Strong evidence of pollution-induced degradation	Conduct TIE to identify contaminants of concern, based on TIE metric, initiate TRE
904CBBUR1	yes	no	no nearby sample	Contaminants are present but may not be bioavailable	Conduct bioassessment testing at a nearby location
904CBBVR4	yes	yes	yes	Strong evidence of pollution-induced degradation	Conduct TIE to identify contaminants of concern, based on TIE metric, initiate TRE
904CBCWC2	yes	yes	no nearby sample	Toxic contaminants are bioavailable, but in situ effects are not demonstrable	Conduct bioassessment testing at a nearby location
904CBENC2	yes	yes	yes	Strong evidence of pollution-induced degradation	Conduct TIE to identify contaminants of concern, based on TIE metric, initiate TRE
904CBESC5	yes	no	yes	Alteration may or may	Initiate TRE for physical
904CBESC8	yes	no	yes	not be due to toxic pollutants	sources of benthic alteration
904CBLAC3	yes	no	yes		
904CBSAM3	yes	yes	yes	Strong evidence of pollution-induced degradation	Conduct TIE to identify contaminants of concern, based on TIE metric, initiate TRE
904CBSAM6	yes	yes	yes	Strong evidence of pollution-induced degradation	Conduct TIE to identify contaminants of concern, based on TIE metric, initiate TRE

6. CONCLUSIONS AND RECOMMENDATIONS

- 1. The monitoring conducted in the Carlsbad HU during 2002 was an initial step in accomplishing the SWAMP objectives listed in Table 3-1 of this report. The SWAMP data, supplemented with the results of other monitoring referenced in this report presents an overview of surface water quality conditions in the Carlsbad HU at the start of the 21st century. The challenge at this time is to build upon this data and develop a coordinated program to focus future water quality assessment efforts and resources on the priority water quality issues in the watersheds.
- 2. The monitoring being conducted by the MS4 praint ees should provide the foundation for this coordinated program. Currently, the 11S4 permittees monitor stormwater flows at two mass loading stations three time parvear and dry weather flows. The County of San Diego has requested that he tracenty of monitoring at most mass loading stations be modified. Rather than monitoring most of the mass loading stations for three wetweather events annually, the County of San Diego requested to monitor most of the mass loading stations for two wet-weather and two dry-weather events annually. The County suggests that the dry weather monitoring will characterize baseline conditions during dry weather flows, identify constituents in dry weather flows that are exceeding water quality objectives, and identify toxicity in dry weather flows. The monitoring results will also assist in identification and prioritization of water quality problems within and between watersheds, and can help focus upstream source investigations to identify and reduce pollutant sources. Additionally, data from dry weather mass loading monitoring can be compared to wet weather mass loading monitoring data in order to identify whether additional focus on dry weather flows is warranted.
- 3. Applying the triad approach to the test results, the recommended action for most stations in the watershed is to initiate a toxicity identification evaluation (TIE). One exception is Escondido Creek, which is consistent with the conclusions of the MS4 storm water monitoring reports that recommends a TIE for Agua Hedionda Creek, but not Escondido Creek.
- 4. Diazinon, disulfoton, oxadiazon, DDE (p,p'), secburnetron and terbuthylazine were widespread in the waters of the Carlsbad HU. The MS4 have continued testing for diazinon, which has decreased in 2003-04 from previous levels at the two mass loading stations. Further testing of surface water is necessary to access trends with the other organic constituents of concern.
- 5. Eutrophic conditions are identified on the 303(d) list for San Elijo Lagoon and Loma Alta Slough. Whereas Escondido Creek, which discharges to San Elijo Lagoon, had consistently elevated levels of total nitrogen and phosphorus levels, Loma Alta Creek,

which discharges to Loma Alto Slough, consistently had levels of total nitrogen and phosphorus below water quality objectives. Further studies are necessary to identify sources of nutrients to the Slough. In addition, studies should be conducted to access the impacts of elevated nutrient levels in Buena Creek, Cottonwood Creek, Encinitas Creek and San Marcos Creek.

- 6. An investigation should be conducted to determine if spikes of selenium are still occurring in San Marcos Creek and to determine the source if it is.
- 7. Sulfate exceeds the Basin Plan objectives throughout the HU. As the objective was based upon the secondary drinking water standard, an investigation should be conducted to determine if the elevated levels are causing or will cause any problems to current or future beneficial uses.
- 8. As with sulfate, manganese was persistently above a scondary MCL for drinking water and an investigation should be conducted to determine if the elevated levels are causing or will cause any problems to current or future beneficial uses.
- 9. Sediment toxicity to Hyalella ztera (univa) was recurrent in Buena Vista, San Marcos and Cottonwood creeks. Sedi nert oxicity affecting Hyalella azteca (growth) occurred more than once only at the Engintus Creek location. An investigation to confirm the toxicity at these locations and determine its potential causes should be initiated.
- 10. Water samples were toxic to Selenastrum capricornutum at the Agua Hedionda, Loma Alta and San Marcos Creek downstream locations on all four occasions, with three and the four samples from Buena Vista and Cottonwood creeks being toxic. An investigation to confirm the toxicity at these locations and determine its potential causes should be initiated.
- 11. Few water samples (4 of 40 samples) met the Toxic Significant Effect criteria for Ceriodaphnia dubia (survival), but 16 of the 40 samples were found to be toxic (significant compared to negative control based on statistical test, and less than the evaluation threshold) in the Ceriodaphnia dubia (young/female) testing.